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Abstract 

Behavioral plasticity is a key mechanism by which animals buffer themselves against environmental 

change. The degree to which behavioral plasticity is constrained by morphological and physiological 

traits, and the factors that drive such relationships, have strong implications for animal fitness yet 

remain poorly understood. In an effort to derive overarching mechanisms that underpin behavioral 

trade-offs in complex natural environments, I examined how morphological and physiological traits 

shape the behavior and performance of large mammals across three ecologically important contexts: 

foraging, reproduction, and post-disturbance. First, I evaluated physiological traits mediating 

individual dietary specialization in an African antelope (bushbuck, Tragelaphus sylvaticus). I found 

that animals in better nutritional condition have narrower diets because they invest more time in 

searching for nutritious foods. These findings are consistent with predictions from optimal foraging 

theory about the energetic underpinnings of individual specialization, suggesting a potentially 

generalizable framework for understanding how individual’s diets are constrained by behavior and 

physiology. Next, I evaluated whether individual behaviors buffer climatic constraints on 

reproductive success in an endangered carnivore (African wild dog, Lycaon pictus). We find that (1) 

packs that use favorable thermal environments, which reduce energetic constraints of heat dissipation 

on the pregnant female, produced larger litters, and (2) fecundity is constrained by competition 

among packs wherein larger packs exclude smaller ones from thermally favorable. Our study is 

among the first to elucidate the mechanistic underpinnings of thermal constraints on reproductive 

success in a wild population of large mammals and suggests that thermal refugia are a key component 

of habitat quality that will likely increase in importance as the climate warms. Finally, I quantified the 

responses of a large-mammal community to an extreme tropical cyclone to identify mechanisms 

underlying animal robustness to disturbance. In March 2019, the worst tropical cyclone on record in 

the southern hemisphere, Cyclone Idai, passed directly over Gorongosa National Park. Utilizing 

multiple data streams for 13 ungulate species and 2 carnivores, I found that small species are most 

vulnerable to cyclones due to limited mobility, which increased likelihood of death during the flood 

and constrained animals’ capacity to withstand food shortage afterwards. This study is the first to 

identify individual-level mechanisms that underpin community-level responses to severe disturbance 

and suggests a general trait-based theory for predicting the impacts of extreme climatic events. 
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Chapter 1: Mechanisms of individual variation in large herbivore diets: roles 

of spatial heterogeneity and state-dependent foraging 

 

Walker, R. H., M. C. Hutchinson, A. B. Potter, J. A. Becker, R. A. Long, and R. M. Pringle. 2022. 

Mechanisms of individual variation in large herbivore diets: roles of spatial heterogeneity and state-

dependent foraging. Ecology e3921. https://doi.org/10.1002/ecy.3921. 

 

Abstract 

Many populations of consumers consist of relatively specialized individuals that eat only a subset of the 

foods consumed by the population at large. Although the ecological significance of individual-level diet 

variation is recognized, such variation is difficult to document and its underlying mechanisms are poorly 

understood. Optimal foraging theory provides a useful framework for predicting how individuals might 

select different diets, positing that animals balance the ‘opportunity cost’ of stopping to eat an available 

food item against the cost of searching for something more nutritious; diet composition should be 

contingent on the distribution of food, and individual foragers should be more selective when they have 

greater energy reserves to invest in searching for high-quality foods. We tested these predicted 

mechanisms of individual niche differentiation by quantifying environmental (resource heterogeneity) and 

organismal (nutritional condition) determinants of diet in a widespread browsing antelope (bushbuck, 

Tragelaphus sylvaticus) in an African floodplain-savanna ecosystem. We quantified individuals’ realized 

dietary niches (taxonomic richness and composition) using DNA metabarcoding of fecal samples 

collected repeatedly from 15 GPS-collared animals (range 6–14 samples per individual, median 12). 

Bushbuck diets were structured by spatial heterogeneity and constrained by individual condition. We 

observed significant individual-level partitioning of food plants by bushbuck both within and between 

two adjacent habitat types (floodplain and woodland). Individuals with home ranges that were closer 

together and/or had similar vegetation structure (measured using LiDAR) ate more similar diets, 

supporting the prediction that heterogenous resource distribution promotes individual differentiation. 

Individuals in good nutritional condition had significantly narrower diets (fewer plant taxa), searched 

their home ranges more intensively (intensity-of-use index), and had higher-quality diets (percent 

digestible protein) than those in poor condition, supporting the prediction that animals with greater 

endogenous reserves have narrower realized niches because they can invest more time in searching for 

nutritious foods. Our results support predictions from optimal foraging theory about the energetic basis of 

individual-level dietary variation and provide a potentially generalizable framework for understanding 
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how individuals’ realized niche width is governed by animal behavior and physiology in heterogenous 

landscapes. 

 

Introduction 

Classic niche theory and most models of trophic interactions assume that individuals in a population are 

ecologically equivalent (Voltera 1926, Hutchinson 1957, Macarthur and Levins 1967). Yet, many 

populations consist of relatively specialized individuals that use only a subset of the resources exploited 

by the population at large (Van Valen 1965, Bolnick et al. 2003, Araújo et al. 2011). Consistent 

differences among conspecific individuals can increase a population’s resilience to disturbance (Reusch et 

al. 2005), influence competition and coexistence (Hart et al. 2016), and increase the probability of 

speciation events (Fryxell and Lundberg 1994). In strongly interacting species such as large mammalian 

herbivores, which shape community structure and ecosystem functions (Pringle et al. 2007, Ripple et al. 

2015, Guy et al. 2021), individual-level diet variation may also have system-wide consequences. To date, 

however, few studies have investigated the occurrence and/or degree of individual diet variation in 

ungulates, let alone the mechanisms that produce it (but see, e.g., Bison et al. 2015, Pansu et al. 2019b, 

Jesmer et al. 2020). 

Optimal foraging theory (OFT) provides one framework for predicting how individual herbivores should 

choose foods (MacArthur and Pianka 1966, Belovsky 1978, Owen-Smith and Novellie 1982, Stephans 

and Krebs 1986). OFT posits that animals should seek to maximize the average rate of energy intake, both 

in the choice of where to feed (i.e., the marginal value theorem; Charnov 1976) and in the diet chosen 

there (i.e., the basic prey model; Emlen 1966, Stephens and Krebs 1986) by balancing the ‘opportunity 

cost’ of stopping to consume an available food item against the cost of moving on to search for something 

more nutritious. Accordingly, individual diets are predicted to be contingent on encounter rate and the 

relative availability of profitable food items, which together should determine the amount of time a 

forager spends searching for preferred foods and whether a food item is accepted or rejected when it is 

encountered (MacArthur and Pianka 1966, Westoby 1974, Charnov 1976). Thus, in systems where high-

quality foods are heterogeneously distributed, individual diets may be both differentiated and ‘optimal’ 

depending on the distribution of resources in each individual’s home range (Stephens and Krebs 1986).  

Despite the prominent role of food distribution in OFT models, few studies have evaluated how landscape 

heterogeneity influences individual diet variation in wild populations (Araújo et al. 2011).  

Experimental studies have shown that conspecifics select different diets even when exposed to identical 

resources (Parent et al. 2014), indicating that factors other than spatial heterogeneity shape patterns of 
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individual diet variation. State-dependent behavior—patterns of activity modulated by an individual’s 

underlying physiological state (McNamara and Houston 1996)—might interact with resource distribution 

to drive dietary variation. Nutritional condition (i.e., energy reserves available for maintenance, growth, 

and reproduction; Parker et al. 2009) is a state variable with especially high potential for influencing the 

behavior of foraging animals (Cook et al 2013, Long et al. 2014). Animals in poor condition are weakly 

buffered against starvation, which decreases the opportunity cost of handling low-quality resources 

relative to searching for higher-quality food items (Mathot and Dall 2013). OFT predicts that foraging 

animals in poor condition should be less selective and more willing to accept lower-quality foods in order 

to maximized caloric yield per time by reducing energy invested in searching (Emlen 1966, Stephens and 

Krebs 1986, Owen-Smith et al. 2010). Simulations have supported this prediction by showing that 

optimal model foragers with greater energy reserves invest more time searching for high-quality food 

items than those with low energy reserves (Nonacs 2001). In addition, controlled experiments have shown 

that satiated individuals choose different prey than those that are less well-buffered against starvation 

(Perry 1987, Gill 2003). Despite this theoretical foundation, however, we know of no previous study that 

has explored state-dependent foraging behavior as a mechanism for generating individual dietary 

variation among free-ranging large herbivores.  

We studied the interaction between environmental (resource heterogeneity) and organismal (nutritional 

condition) determinants of diet composition in bushbuck (Tragelaphus sylvaticus), a ~45-kg African 

bovid. We longitudinally sampled bushbuck diets in Mozambique’s Gorongosa National Park by 

collecting multiple fecal samples from 15 GPS-collared individuals (6–14 samples per animal collected 

over 42–56 days). We analyzed these samples using DNA metabarcoding, enabling taxonomically precise 

measurement of diet composition and richness at the individual level (Kartzinel et al. 2015, Pansu et al. 

2019b, Pringle and Hutchinson 2020). Bushbuck in Gorongosa show high fidelity to small (generally < 3-

km2) home ranges distributed across two broad habitat types (Atkins et al. 2019), which allowed us to 

evaluate the role of spatial resource heterogeneity at different scales (population level and partitioned by 

habitat affiliation) in generating individual diet differentiation. Further, bushbuck are non-seasonal 

breeders, leading to wide variation among individuals in reproductive status and associated nutritional 

condition (owing to the high costs of gestation and lactation; Cook et al. 2013). This life-history trait 

allowed us to evaluate the role of state-dependent foraging behavior in shaping individual diets.  

We hypothesized that diet selection is constrained by spatial variation in the distribution of food plants 

because foragers with small home ranges, high site fidelity, and limited mobility have only a subset of the 

population-level resource base available to them. Based on this hypothesis, we predicted that (a) 

individuals consistently eat distinct diets (i.e., each individual uses a small fraction of the food plants used 
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by the population at large ) and (b) dietary dissimilarity between individuals increases as a function of the 

distance and vegetation dissimilarity between home ranges. We further hypothesized that state-dependent 

foraging behavior is a key mechanism generating variation in diet selection among conspecific 

individuals because trade-offs faced by consumers (e.g., forage intake vs. search time) are modulated by 

nutritional condition. Accordingly, we predicted that bushbuck in better condition have less variable diets 

because they invest more time searching for the best food items and thus (a) accept fewer food types  

(leading to lower dietary richness), (b) search their home ranges more exhaustively (higher intensity-of-

use index), and (c) have diets that are higher quality on average (higher percent digestible protein) than 

individuals in poor condition. 

 

Methods 

Study site and species 

Gorongosa is situated at the southern end of the Great Rift Valley (-18.97, 34.35; Figure 1.1ab). Our 

study site at the southern end of the park comprises two main habitat types: savanna woodland and 

floodplain grassland (Figure 1.1c; Stalmans et al. 2019, Atkins et al. 2019, Becker et al. 2021). These 

habitats have very different plant communities (Figure 1.1de; Figure A.1). The woodland is a mix of 

Acacia, Combretum, and palm savanna dotted with termitaria thickets; the floodplain is an open and 

comparatively homogeneous landscape of grasses, forbs, and subshrubs (Stalmans and Beifuss 2008). The 

majority of annual rainfall (700-900 mm; Stalmans et al. 2019) occurs during the wet season (November–

April), and primary productivity peaks during this period. Food and water become increasingly limited as 

the dry season advances. We quantified bushbuck diets during the mid-dry seasons (June–August) of 

2018 and 2019.  

Bushbuck are spiral-horned antelopes (Bovidae: Bovinae: Tragelaphini) that occur widely across sub-

Saharan Africa. They are solitary but not aggressively antisocial, such that home ranges overlap and 

individuals often forage in close proximity (Estes 1991). As strict browsers, bushbuck feed almost 

exclusively on trees, shrubs, and forbs to the exclusion of grasses (Pansu et al. 2019b, Kartzinel and 

Pringle 2020, Potter et al. 2022). Bushbuck also use woody plants for concealment and are considered 

“dependent on thick cover” for predator avoidance (Kingdon 1997: 352). In Gorongosa, however, 

bushbuck have increasingly occupied the Lake Urema floodplain over the last 20 years; in that period, 

large-mammal populations were recovering from  >90% declines during the Mozambican Civil War 

(1977-1992) and predation risk was low, enabling bushbuck to expand into the treeless floodplain (Atkins 

et al. 2019). By 2018, ungulate biomass in Gorongosa had recovered to nearly pre-war levels, with large 
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Figure 1.1. Bushbuck habitat affiliations in Gorongosa National Park, Mozambique. Gorongosa is located in 

central Mozambique (A) and consists of four major habitat zones (B, from left, western escarpment (medium grey), 

woodland (white), floodplain (light grey), eastern escarpment (dark grey) and Lake Urema (black)). Bushbuck home 

ranges (95% minimum convex polygons) are drawn within our study area in (C); blue polygons (different shades 

indicate different individuals) represent individual home ranges that lie only within woodland habitat, whereas red 
polygons represent individual home ranges that overlap with floodplain habitat. A female bushbuck foraging in 

typical woodland habitat (i.e., mix of Acacia-Combretum and Hyphaene palm savanna) is illustrated in (D); photo 

credit: R.H.W. A female bushbuck foraging in typical floodplain habitat (i.e., open landscape of grasses, forbs, and 

subshrubs) is illustrated in E; photo credit: M.C.H. 

 

populations of mid-sized browsing antelopes, including 1,700 bushbuck, 1,900 nyala (T. angasii), 1,900 

kudu (T. strepsiceros), and 6,000 impala (Aepyceros melampus) (Stalmans et al. 2019). Lions (Panthera 

leo) were the dominant top carnivore (≥100 individuals), but bushbuck were not among their recorded 

prey (Bouley et al. 2018). African wild dogs (Lycaon pictus) and leopards (P. pardus) were extirpated 

during the war, but a pack of 14 wild dogs was reintroduced in June 2018 (the start of our study) and have 

fed heavily on bushbuck (Bouley et al. 2021); at least one leopard was also present in the area by 2018. 

Thus, Gorongosa’s large-mammal fauna was abundant and nearly intact at the time of our study, but 

species’ relative abundances remained skewed and predation pressure low (but increasing) relative to the 

pre-war baseline.  
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Animal handling and condition measurements 

In June of 2018 and 2019 we captured adult female (n = 20) and male (n = 10) bushbuck as part of the 

long-term ASHAMED study (Allometry of Spiral-Horned Antelopes: Movement Ecology & Diet). We 

chemically immobilized bushbuck via remote injection (1.5–2.5 mg Thiafentanil, 50–60 mg Ketamine, 

10–15 mg Azaperone) from a vehicle. Darts were equipped with radio-transmitters to facilitate recovery 

of darted individuals. We fit each individual with an iridium satellite GPS collar (VERTEX Lite, 

Vectronic Aerospace) programmed to record hourly locations and equipped with a VHF transmitter that 

we used to relocate collared individuals for diet sampling via radio telemetry. GPS collars were remotely 

triggered to drop off one year after deployment.  

We collected a fecal sample (>5 pellets) from the rectum of each immobilized bushbuck for molecular 

analysis (see Diet analysis). For female bushbuck, we used an ultrasound (Ibex Pro, EI Medical Imaging) 

to confirm presence of a fetus and palpated the udder to determine lactation status (lactating or not 

lactating). For each individual, we collected body measurements (weight, body and hind-foot length, 

chest girth), ultrasonography data (maximum rump-fat depth, thickness of biceps femoris and longissimus 

dorsi muscles), and palpation scores at the sacrosciatic ligament, lumbar vertebrae, sacrum, base of the 

tail, and caudal vertebrae (based on protocols developed for North American ungulates; Cook et al. 2010, 

Stephenson et al. 2020). Because equations for converting these measurements to an estimate of ingesta-

free body fat have not been validated for African ungulates, we followed Atkins et al. (2019) and Becker 

et al. (2021) in using principal component analysis to develop an index of relative nutritional condition 

(Tables A.1-2, Figure A.2). All animal-handling procedures were approved by the Animal Care and Use 

Committees of the University of Idaho (#IACUC-2019-32) and Princeton University (#2075F-16) and 

followed guidelines established by the American Society of Mammologists (Sikes et al. 2016). 

Habitat and space-use analyses 

We used 95% minimum convex polygons (MCP) derived from a subset of the hourly GPS-location data 

to estimate individual bushbuck home ranges during the diet-sampling period in each year (June – 

August; Table A.3). We used two complementary approaches to assess the role of spatial heterogeneity in 

structuring diet composition. First, following Tobler’s (1970) first law of geography (“everything is 

related to everything else, but near things are more related than distant things”), we calculated the 

distance between each pair of bushbuck home-range centroids (the arithmetic mean position of GPS fixes 

from each individual) as a proxy for similarity of the vegetation communities available to bushbuck. We 

lacked home-range-specific measurements of plant community composition, but we verified that plant 

community dissimilarity increased with geographic distance, both between and within habitats (see 

Supplemental Text; Figure A.3). Second, we quantified dissimilarity of vertical vegetation structure 
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between each pair of bushbuck home ranges using airborne light detection and ranging (LiDAR) data 

collected in August 2019 (Wooding Geospatial Solutions Ltd.). LiDAR flights were conducted at 880 m 

above ground level at 110 knots; the resulting terrain and vegetation elevation measurements had a 

horizonal spatial resolution of 0.5 m and a vertical resolution of 0.1 m. For each home range, we 

calculated the proportion of LiDAR points classified as ground (0 m), low vegetation (<0.3 m), medium 

vegetation (0.3–1.6 m), and high vegetation (>1.6 m), following guidelines of the American Society for 

Photogrammetry and Remote Sensing (ASPRS 2008). We then calculated the Bray-Curtis index of 

compositional dissimilarity in vegetation structure (proportion of LiDAR points classified as ground, low, 

medium, and high) between each pair of bushbuck home ranges.  

We quantified differences in searching behavior by bushbuck within their home ranges using the 

intensity-of-use index (Hailey and Coulson 1996, Loretto and Vieira 2005, Almeida et al. 2019). We 

calculated intensity of use as the ratio of total movement distance to the square of the area of movement 

(100% MCP) during the diet sampling period for each bushbuck (Table A.3) using the intensity_use 

function in the amt package (Singer et al. 2019) in R (version 3.5.3, R Core Team 2018). Bushbuck 

sampled in 2019 had hourly GPS data only during the first 21 days after capture, owing to a change in 

sampling rate required for a separate research project; thus, we restricted all GPS data to 21 days after 

capture to avoid bias due to unequal sample sizes. Results using restricted vs. full data sets were 

qualitatively equivalent (Figure A.4). Although this index does not distinguish among active behaviors 

(e.g., cannot distinguish movements related to searching for food versus seeking shade), intensity of use is 

proportional to the time spent active per unit of area and increases when animals (i) follow highly 

tortuous paths, (ii) move slowly, or (iii) perform search loops (Almeida et al. 2019). Thus, the index 

quantifies how active bushbuck are within their home ranges, enabling us to test the prediction that 

bushbuck in good condition spend more time searching than do individuals in poor condition (see 

Statistical analyses). 

DNA metabarcoding 

We quantified bushbuck diet composition using fecal DNA metabarcoding following protocols that we 

have previously used to study herbivore diets in Gorongosa (Atkins et al. 2019, Branco et al. 2019, Pansu 

et al. 2019b, Guyton et al. 2020. Becker et al. 2021, Potter et al. 2022). After collecting an initial fecal 

sample at the time of capture, we used radio telemetry to relocate each collared bushbuck every 1–2 days. 

Upon relocation we confirmed individual identity via an ID number written on the collar belting and then 

observed individuals for up to 2 hours from distances of 5–100 m (depending on the density of vegetation 

and wariness of the animal). Bushbuck typically returned to a non-vigilant state (eyes not fixated on the 

observer and ears relaxed while resting or foraging) after <10 minutes of observation. We observed 
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individuals until they defecated, whereupon we recorded their distance from the observer and the nearest 

landmarks to the defecation site. We then searched that area for the fresh fecal sample, selected >5 debris-

free fecal pellets using nitrile gloves and deposited them in an unused plastic zip bag. We stored samples 

on ice for <6 hours before pre-processing them in Gorongosa’s laboratory as follows. We homogenized 

each fecal sample and transferred a pea-sized subsample into a labeled tube containing silica beads and 

buffer (Xpedition Stabilization/Lysis Solution, Zymo Research Corporation). We vortexed samples to lyse 

cells and froze them at -20°C pending transport to Princeton University, where we stored them at -80°C. 

Prior to transport, we subjected each sample to an antiviral heat treatment (72°C for 30 minutes) as 

mandated by the US Department of Agriculture (permit #130123 to RMP).  

DNA extraction and PCR were conducted in a Biosafety Level 2 facility dedicated to fecal DNA analysis, 

with physically separated pre- and post-PCR rooms and laminar flow hoods for PCR preparation. We 

extracted DNA from each sample in a biosafety cabinet using Zymo Xpedition Soil/Fecal MiniPrep kits 

(as per manufacturer protocols) in batches of 29 samples and 1 negative extraction control. In triplicate 

PCR replicates of each sample, we amplified the P6 loop of the chloroplast trnL(UAA) intron, a standard 

region for metabarcoding degraded plant DNA, using primers with a unique 8-nt tag at the 5’ end that 

enabled pooling of uniquely identifiable PCR products for sequencing in a single high-throughput run 

(Taberlet et al. 2007). 

A detailed description of the laboratory and bioinformatic protocols used to analyze our samples is in 

Guyton et al. (2020). Briefly, sequencing was performed on an Illumina HiSeq 2500 and data were 

processed using the OBITools pipeline (Boyer et al. 2016). Sequences of low quality (low alignment 

score, unexpected barcode length, ambiguous nucleotides, singletons) were discarded; the remaining 

sequences were considered molecular operational taxonomic units (mOTUs, ‘taxa’) and identified by 

primary comparison to a local plant DNA reference library collected in Gorongosa (Pansu et al. 2019a) 

and secondary comparison to a global database compiled from the European Molecular Biology 

Laboratory (release 134) only if the local library assignment score was <98%. After filtering, we averaged 

the number of reads across all retained PCR replicates for each sample and removed mOTUs accounting 

for <1% of reads per sample (Guyton et al. 2020). We rarefied sample read depth to 7,000 to facilitate 

comparisons among samples. From these data, we determined the presence/absence and relative read 

abundance (RRA) of each plant taxon in each sample, which we used to quantify individual dietary 

richness and variation (Walker et al. 2022). Results in the main text are based on RRA (as are Table A.4, 

Figures A.5-6), which is an informative proxy for the proportional consumption of plant taxa in 

comparative analyses of large-herbivore diets using the trnL-P6 markers  (Willerslev et al. 2014, Craine 

et al. 2015, Kartzinel et al. 2015) and generally provides a more robust portrait of diet composition than 
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occurrence-based data (Deagle et al. 2019) as the latter inflate the importance of uncommon food items 

(which in turn account for the majority of foods in vertebrate diets; Hutchinson et al. 2022). While RRA 

is subject to several sources of error that can influence the proportional representation of particular plant 

taxa (e.g., amplification bias, differential digestion, variation in chloroplast density) and is thus an 

imperfect reflection of true biomass consumption, any systematic biases should be consistent across the 

samples analyzed here, and idiosyncratic biases should be mitigated by our standardized pipeline and 

quality-control steps (Deagle et al. 2019). As a further sensitivity check, we also present results based on 

presence/absence data which yielded similar inferences about the generality of individual niche 

differences and their dependence on spatial heterogeneity (Table A.5, Figures A.7-10).  

We were unable to obtain a fecal sample from every individual during every observation period, which 

resulted in unequal sample sizes across individuals. We limited our analyses to individuals for which we 

obtained ≥6 samples in the two months after collaring (Table A.3). For analyses of individual variation 

and dietary richness (which require multiple samples per individual and may be sensitive to which 

samples are included for each individual; see Statistical analyses), we rarified to 6 samples per individual 

and performed the statistical test in each of 1,000 re-sampling iterations (bootstrapping). For other 

analyses that require just one measure of diet per individual (see Statistical analyses), we calculated 

‘standardized diets’ for each individual as the mean RRA of each mOTU across 1,000 bootstrapping 

iterations. 

Diet quality 

Dry-season digestible protein (DP) content of foliage from 204 of Gorongosa’s most common plant 

species was quantified as part of a concurrent study (Potter et al. 2022). We estimated the quality of 

individual bushbuck diets by calculating weighted average of DP in the standardized diet of each 

bushbuck using the RRA of each mOTU as the weighting factor (Atkins et al. 2019, Branco et al. 2019, 

Becker et al. 2021, Walker et al. 2022). While this approach is subject to the caveats above about the 

quantitative interpretation of RRA (see DNA metabarcoding), we verified our RRA-based results with 

occurrence (presence/absence) data by calculating the weighted average of DP with each plant mOTU in 

bushbuck diets weighted equally (Figure A.10). Plant taxa for which nutrient data were available 

accounted for a median of 98% of standardized bushbuck diets (range 83-100%).  

Statistical analyses 

We tested each of our predictions at two scales: the population level and partitioned by habitat affiliation 

(floodplain or woodland). Following Atkins et al. (2019), we classified bushbuck as “floodplain-

associated” if their home range (95% MCP) overlapped with the treeless floodplain grassland during the 

sampling period (Figure 1; Table A.3). Floodplain-associated bushbuck (n = 7) spent an average of 40% 
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(range 6-71%) of their time in this treeless interior of the floodplain, differentiating them from bushbuck 

that spent 0% of their time in the floodplain grassland (‘woodland-associated’ bushbuck; n = 8).  

We calculated the Bray–Curtis index of compositional dissimilarity between each pair of fecal samples 

and ordinated the values using non-metric multidimensional scaling (NMDS) to visualize patterns of 

dietary dissimilarity both within and among individual bushbuck (Kartzinel et al., 2015, Pansu et al., 

2019b). To test our prediction that individuals consistently eat distinct diets, we conducted permutational 

multivariate analysis of variance (perMANOVA) on the Bray-Curtis distance matrix for each pair of fecal 

samples, running 9,999 permutations with year (2018 or 2019) as a blocking factor to control for any year 

effects and individual ID as the main predictor (adonis2 in the vegan package in R; Oksanen et al. 2020). 

To test for pairwise differences among bushbuck diets, we conducted post-hoc tests using a Holm-

Bonferroni adjustment to control for the familywise error rate both across and within habitats 

(pairwise.adonis  in the funfuns package in R; Holm 1979, Trachsel 2021).  

To test our prediction that bushbuck occupying home ranges with similar forage availability (proxied by 

distance between home-range centroids; see Appendix A: Supplemental Text, Figure A.3) and vegetation 

structure would consume similar diets, we used Mantel tests (Pansu et al. 2019b) to evaluate relationships 

between pairwise inter-individual dissimilarity of standardized diets (Bray-Curtis distance) and (i) 

pairwise geographic distance between home-range centroids, and (ii) pairwise dissimilarity of vegetation 

structure (Bray-Curtis distance).  

We used linear regressions to evaluate the relationship between nutritional condition and intensity of use, 

percent dietary DP, and dietary richness to test our prediction that bushbuck in better nutritional condition 

invest more time searching for high-quality foods and thus have less variable diets than bushbuck in 

poorer condition. We calculated population-level dietary richness as the mean number of mOTUs present 

in all standardized bushbuck diets across bootstrapping iterations. We calculated individual dietary 

richness as the mean number of mOTUs in each bushbuck’s standardized diet across bootstrapping 

iterations. To evaluate the influence of nutritional condition on dietary richness relative to other factors, 

we fit competing multiple regression models that included nutritional condition, reproductive state 

(lactating female, non-lactating female, or male), and habitat affiliation (woodland or floodplain) as 

candidate predictors. We ranked models using Akiake’s information criterion for small sample size 

(AICc) and evaluated relative model performance by calculating Akaike weights (AIC𝑤̂) (Burnham and 

Anderson 2002). To assess the importance of longitudinal sampling for accurately characterizing 

individual diets, we (i) re-ran all analyses using one randomly drawn sample from the full suite of 

samples collected from each individual to estimate dietary richness (averaged over n = 1,000 random 

trials), (ii) compared these estimates with those from standardized longitudinal bootstrapping (n = 6 per 
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individual) using Welch’s two-sample t-tests, and (iii) plotted species-accumulation curves (spaccum 

function in the vegan package in R; Oksanen et al. 2020) to evaluate how the cumulative number of 

mOTUs present in a bushbuck diet varied as a function of sample size using all samples per individual 

(Soberon and Llorente 1993, Colwell and Coddington 1994).  

 

Results 

Role of spatial heterogeneity in individual diet variation 

Population-level dietary richness was 95.6 ± 3.34 taxa (mean ± SD across 1,000 resampling iterations), 

whereas individual-level dietary richness ranged from 12.8 ± 1.44 to 31.1 ± 3.40 taxa (mean ± SD among 

all individuals = 21.2 ± 5.81). Thus, individual diets comprised 13–33% of the total plant taxa used by the 

population.  

After controlling for year effects, we observed marked differences in diet composition among individuals 

both at the population level (perMANOVA: pseudo-F14,144  = 15.21,  P < 0.001, R2 = 0.60 ) and within 

habitat types (woodland: pseudo-F7,80 = 9.97, P < 0.001, R2 = 0.47; floodplain: pseudo-F6,62 = 8.39, P < 

0.001, R2  = 0.45); 96% of 105 pairwise contrasts between individuals were statistically significant after 

controlling for multiple comparisons (Table A.4). These differences are clear in NMDS ordinations of all 

samples collected per individual (Figure 1.2). Notably, we observed strong shifts in the diets of two 

females that moved from woodland into the floodplain immediately after capture: the sample collected at 

capture from each of these individuals reflects a woodland-type diet while the rest are characteristic of 

floodplain-affiliated animals (Figure 1.2a). The two initial samples from these individuals were excluded 

from floodplain-specific diet analyses.  

The location and vegetation structure of bushbuck home ranges strongly influenced diet composition. 

Geographic distance between home-range centroids, our validated proxy for plant community 

dissimilarity (see: Appendix A: Supplemental Text; Figure A.3), was positively related to dietary 

dissimilarity between individuals at the population level (Mantel test, P < 0.001; Figure 1.3a) and within 

woodland habitat (Figure 1.3b) but not within floodplain (Figure 1.3c). Similarly, dissimilarity in 

vegetation structure between home ranges was positively related to dietary dissimilarity at the population 

level and in woodland (Mantel test, P < 0.001; Figure 1.3de) but not in the floodplain (Figure 1.3f). 

Analyses based on occurrence-based dietary data in lieu of RRA gave similar results (Figure A.9). 
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Figure 1.2. Non-metric multidimensional scaling (NMDS) ordinations showing relative dissimilarity in the 

taxonomic composition of individual fecal samples (points; n = 160) and dry-season diets (polygons; n = 15) of 

bushbuck in Gorongosa. Results for the full population are shown in (A), and results partitioned by habitat 

association are shown in (B) (woodland, blue) and C (floodplain, red). Points in closer proximity to one another 

indicate more similar diets; polygons are convex hulls around all samples from each individual. Two individuals 

captured in woodland habitat moved into the floodplain shortly after collaring (outlying red points in A are those 

collected at capture); we excluded the initial woodland samples from these individuals from our analysis of 

floodplain diets (C). We observed significant differences among individual diets both at the population level 

(perMANOVA: pseudo-F14,144  = 15.21,  P < 0.001, R2 = 0.60 ) and within habitat types (woodland: pseudo-F7,80 = 

9.97, P < 0.001, R2 = 0.47; floodplain: pseudo-F6,62 = 8.39, P < 0.001, R2  = 0.45).  
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Figure 1.3. Relationships between bushbuck diet composition and spatial variation in the distribution of 

resources at Gorongosa. We evaluated the relationship between pairwise diet dissimilarity (Bray-Curtis index) and 

distance between home-range centroids (km) for all pairs of GPS-collared bushbuck (A), bushbuck with home 

ranges affiliated with woodland habitat (B), and those affiliated with floodplain habitat (C). Additionally, we 
evaluated the relationship between pairwise diet dissimilarity and dissimilarity in home-range vegetation structure 

(Bray-Curtis index) between all pairs of GPS-collared bushbuck (D), bushbuck with home ranges in woodland 

habitat (E), and bushbuck with home ranges in floodplain habitat (F). Blue points illustrate comparisons between 

pairs of woodland-affiliated individuals, red points between pairs of floodplain-affiliated individuals, and purple 

points between woodland- and floodplain-affiliated individuals. We quantified vegetation structure by calculating 

the proportion of LiDAR points classified as ground-level, low, medium, and high vegetation, and by using the 

Bray-Curtis index to quantify pairwise compositional dissimilarity between home ranges based on those proportions. 

P-values in each panel are from Mantel’s permutation tests for similarity between two matrices. 

 

Role of state-dependent foraging in individual diet variation 

Nutritional condition influenced bushbuck searching behavior, diet quality, and dietary richness. 

Bushbuck in better condition had higher intensity-of-use indices—i.e., spent more time actively searching 

their home ranges per unit area—than those in poorer condition. This correlation was evident at the 

population level (βcondition = 24.3, P < 0.001, R2 = 0.49; Figure 1.4a) and within each habitat (woodland: 

βcondition = 32.3, P = 0.07, R2 = 0.37; floodplain: βcondition = 24.9, P = 0.01, R2 = 0.71; Figure 1.4bc), as well 

as when we used all hourly GPS locations collected during the diet sampling period instead of limiting 

them to the first 21 days after capture (Figure A.4).  
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Figure 1.4. Relationships between a multivariate index of nutritional condition (see Methods) and bushbuck 

foraging behaviors in Gorongosa. Blue points represent bushbuck with home ranges affiliated with woodland 

habitat; red points represent bushbuck with home ranges affiliated with floodplain habitat. Consistent with 

predictions of optimal foraging theory, individuals in good nutritional condition searched their home ranges more 

intensively (A) and had higher-quality (D), narrower diets (G; mean ± SD unique mOTUs). These relationships 

were still evident when we analyzed only bushbuck that lived within woodland habitat (B,E,H), but not for 

bushbuck that lived within floodplain habitat (C, F, I). R2 and P-values are from ordinary least-squares linear 

regression models.  

 

Bushbuck in better condition tended to eat higher-quality diets (DP: βcondition = 1.79, P = 0.06, R2 = 0.18; 

Fig. 4d). This population-level trend was driven by the higher average values of nutritional condition and 

dietary DP in the floodplain (Welch’s two sample t-test: 𝐷𝑃̅̅ ̅̅
𝑓𝑙𝑜𝑜𝑑𝑝𝑙𝑎𝑖𝑛= 24.5,  𝐷𝑃̅̅ ̅̅

𝑤𝑜𝑜𝑑𝑙𝑎𝑛𝑑 = 15.9,  P < 

0.001). However, nutritional condition was also positively correlated with dietary DP within woodland 

(βcondition = 0.92, P = 0.03, R2 = 0.52; Figure 4e), whereas we found no correlation within the floodplain 

(βcondition = 0.07, P = 0.21, R2 = 0.15; Figure 4f). 
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Bushbuck in better condition had lower dietary richness (narrower realized niches) than those in poorer 

condition (Figure 1.4g). Indeed, nutritional condition was the sole predictor variable in the best regression 

model of diet richness (βcondition = -3.71, P < 0.001, R2 = 0.65) and was included in all of the top four 

candidate models (Table 1.1). This relationship held for bushbuck in woodland habitat (βcondition = -4.12, P 

= 0.01, R2 = 0.62) but was not observed among bushbuck in the floodplain (βcondition = -0.083, P = 0.25, R2 

= 0.10) (Figure 4h,i). Analyzing dietary Shannon diversity in lieu of richness gave qualitatively similar 

results (Figure A.11). The size of bushbuck home ranges was not related to individual dietary richness 

(Figure A.12). 

Table 1.1. Competing multiple regression models for explaining variation in individual dietary richness. 

‘Habitat’ is a categorical indicator of which habitat type (floodplain or woodland) affiliated with each bushbuck 

home range. ‘Lactation’ is a categorical indicator of reproductive status (lactating, non-lactating, or male). We 
included these covariates to control for variation in diet richness unaccounted for by nutritional condition (see 

Methods). 

 Model Adj. R2 ΔAICc AICŵ 

 Nutritional Condition  0.65 0 0.541 

 Nutritional Condition + Habitat  0.70 0.433 0.436 

 Nutritional Condition + Lactation  0.63 6.843 0.018 

 Nutritional Condition + Habitat + Lactation 0.65 10.173 0.003 

 Habitat 0.21 12.244 0.001 

 Lactation 0.27 14.807 0.000 

 Habitat + Lactation 0.27 16.940 0.000 

 

Role of longitudinal sampling in inferences about individual diet variation 

Analyzing a single diet sample per individual underestimated diet breadth: diets inferred from one sample 

had <50% of the food-plant richness estimated from standardized longitudinal sampling (Welch’s two 

sample t-test:  𝑋̅𝑠𝑖𝑛𝑔𝑙𝑒= 10,  𝑋̅𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙= 21, P < 0.001). Species-accumulation curves showed that even 

6 or 10 samples were not universally sufficient for individual dietary richness to asymptote (Figure A.13), 

despite being far greater than the (typically single) individual sample size commonly used in studies of 

individual diet variation in ungulates (Bison et al. 2015, Pansu et al. 2019b, Jesmer et al. 2020) and other 

taxa (Araujo et al. 2011). 
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Discussion 

Although patterns of diet variation and individual specialization have been documented in diverse taxa 

(Bolnick et al. 2003, Araújo et al. 2011), empirical investigation of the mechanisms that lead to 

differentiation among individuals is limited. This is especially true for large herbivores, which are often 

depicted as highly generalized consumers but may in fact specialize on narrow sets of plant taxa 

(Hutchinson et al. 2022). By drawing on the ability to repeatedly sample individual diets with high 

taxonomic resolution, we show that bushbuck eat distinct subsets of the foods used by the population 

across both large and small spatial scales. We further show that individual differences in diet richness and 

composition arise from two complementary mechanisms: spatial heterogeneity in resource distribution 

and variation in nutritional condition among individuals. These findings are consistent with predictions 

from OFT about the energetic underpinnings of individual specialization, suggesting a potentially 

generalizable framework for understanding how individual’s realized dietary niches are constrained by 

behavior and physiology. 

Spatial heterogeneity structures individual dietary niche 

OFT predicts that the opportunity cost of stopping to consume an available food item versus the cost of 

moving on to search for a more nutritious food item is modulated by the distribution of high-quality food 

across the landscape (e.g., marginal value theorem and basic prey choice models; Emlen 1966, MacArther 

and Painka 1966, Charnov 1976). Thus, individual dietary differences should emerge in environments 

where food types are heterogeneously distributed and each forager’s search area is limited. Consistent 

with these predictions, we observed significant differences among bushbuck diets both at the population 

level and within habitat types. Much of the individual dietary variation we observed stemmed from 

differences in the structure and composition of food plants among bushbuck home ranges, as evidenced 

by both the clear separation of woodland- and floodplain-associated bushbuck diets and the interactive 

effect of landscape heterogeneity and home-range location on individual dietary niches. In general, 

bushbuck that lived closer together (and thus had access to more similar food plants; Appendix S4) and 

had similar vegetation structure within their home ranges consumed more similar diets.  

These trends were not significant for floodplain bushbuck, despite generally pronounced individual niche 

differences in that habitat. This might at first seem intuitive, given that the treeless floodplain interior is 

structurally homogenous relative to woodland (Figure A.1). Yet floodplain bushbuck varied in their use 

of the savanna at the floodplain edge (Figure 1.1c), such that the range of structural dissimilarity between 

floodplain home ranges was as great as that in woodland (Figure 1.3ef); moreover, plant community 

dissimilarity increased with geographic distance within and across habitats (Figure A.3). We hypothesize 

that the weak influence of distance and structural dissimilarity on diet differentiation in the floodplain 
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stems from the more uniformly high-quality forage in that habitat (Atkins et al. 2019, Becker et al. 2021), 

where flooding annually resets succession and replenishes soil nutrients (Tinley 1977). Floodplain diets 

were uniformly lower in richness and higher in DP than woodland diets (Figure 1.4), and the top-5 

floodplain food taxa (Mimosa pigra, Ludwigia adscendens, Ambrosia maritima, Faidherbia albida, 

Bergia mossambicensis) collectively accounted for >50% of each individual’s standardized diet and were 

among the most protein-rich plants in either habitat (Walker et al. 2022). By foraging selectively on a 

subset of abundant, high-quality plants in their home ranges, floodplain bushbuck might decouple 

individual dietary variation from the geographic structure in plant community composition. In this 

respect, our null results in that habitat would be consistent with OFT, because trade-offs between intake 

and search time are relaxed in environments with a homogenous distribution of high-quality food. 

Despite the importance of resource abundance and distribution in theoretical models of prey choice 

(Stephans and Krebs 1986) and niche differentiation (Van Valen 1965), few studies of diet variation and 

individual specialization in wild populations explicitly consider the role of resource distribution in driving 

differences among individuals (Araújo et al. 2011). Consequently, there is little empirical support for the 

rather intuitive prediction that segregation across habitat types leads to greater diet differentiation among 

individuals (Araújo et al. 2011; but see: Layman et al. 2007, Darimont et al. 2009). Our results show that 

the spatial distribution of resources influences diet composition across scales, underscoring the 

importance of incorporating measures of resource availability into future studies of individual diet 

differentiation. Further exploration of the role of landscape heterogeneity would benefit from detailed 

data on food-plant availability and palatability. However, the latter is extremely difficult to quantify for 

free-ranging animals, and our results show that even selectivity (use relative to availability) is hard to 

measure at the individual level. For example, we have shown that the subpopulation of bushbuck in 

Gorongosa’s floodplain strongly selects for the shrub M. pigra (Pansu et al. 2019b), but accurate 

individual-level assessment would entail measuring plant availability within each bushbuck’s home range. 

The effects of landscape heterogeneity on dietary specialization could have important implications for 

herbivore community dynamics. Population-wide, bushbuck diets include plant taxa from both woodland 

and floodplain habitats, which should relax intraspecific competition via niche complementarity (Bolnick 

et al. 2011) but leads to higher dietary overlap with heterospecific competitors (Pansu et al. 2019b). The 

impacts of such diffuse interspecific niche overlap on species coexistence and population abundance 

remain unresolved; theoretically, alternative outcomes are possible. On the one hand, individual variation 

can destabilize coexistence by weakening between-species niche differences and compounding the effects 

of demographic stochasticity; on the other, it can ease interspecific competition and dampen population 

fluctuations across heterogeneous landscapes (Bolnick et al. 2011, Hart et al. 2016, Stump et al. 2022). 
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Evaluating the strength and outcomes of interspecific competition in antelopes remains a formidable 

challenge (Prins 2016), and our study highlights the need to incorporate intraspecific niche variation in 

this effort. 

State-dependent foraging constrains individual diet variation  

OFT models of patch use and prey choice predict that in heterogenous resource landscapes, individuals 

with high energy reserves should invest more time searching, be more discriminating, and thus have 

narrower, higher-quality diets than individuals that are less well buffered against starvation (Emlen 1966, 

Mathot and Dall 2013). We found that bushbuck in better condition generally searched their home ranges 

more intensively for less diverse but more nutritious diets than bushbuck in poorer condition. This pattern 

diverged only in the floodplain, where the trade-off between search time and food quality is relaxed and 

the corresponding relationships between nutritional condition, search intensity, and diet quality are 

therefore expected to dissipate. These results are consistent with OFT (Emlen, 1966, Svänback and 

Bolnick 2005) and with simulation models of state-dependent foraging showing that individuals with 

higher energy reserves search longer for higher quality food (Nonacs 2001). Moreover, experimental 

work has demonstrated that animals at higher risk of starvation are less ‘choosy’ when selecting among 

food types or patches (Barnett et al. 2007), suggesting that our findings may be general across diverse 

taxa.  

State-dependent foraging can result in consistent dietary differences among individuals when positive 

feedbacks exist between nutritional condition and constraints on forage selection (i.e., individuals in good 

condition face fewer constraints; Sih et al. 2015). In this ‘rich get richer’ scenario, differences in diet 

variation between individuals in good versus poor condition should be sustained through time (Bolnick et 

al. 2003). Such ‘disruptive’ intraspecific resource partitioning, in which some individuals are able to be 

increasingly specialized while others are forced to remain generalized, is reported less frequently than the 

scenario in which all individuals are similarly specialized on subsets of the population-level diet (Estes et 

al. 2003, Araujo et al. 2011, Vander Zanden et al. 2013; but see West 1986, Darimont et al. 2007, Jesmer 

et al. 2020), and may be a potent selective force insofar as differences in condition are correlated with 

fitness. State-dependent behavior may thus provide a mechanistic explanation for patterns of nested 

resource partitioning (Araújo et al. 2010, Calson et al. 2021) which, under OFT, emerge when individuals 

share similar food preferences but differ in the degree to which they accept less-preferred resources 

(Svänback and Bolnick 2005). We note, however, that nutritional condition is dynamic and varies with 

factors other than foraging success (e.g., reproductive state), which may disrupt the feedback loop and 

result in individuals intermittently trading places along a generalist-specialist continuum.  
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Although we lack the data to explicitly test whether mechanisms other than state-dependent foraging 

modulate food preference or diet composition (e.g., inherited or learned preferences; Taper and Case 

1985, Estes et al. 2003), our results are consistent with simulation analyses in which behavioral 

adjustments to physiological state enhanced fitness in the absence of individual preferences (Nonacs 

2001). Together with evidence that nutritional condition is likely to be ‘reset’ many times during the 

average lifespan of a bushbuck due to factors other than foraging strategy (Parker et al. 2009), we suggest 

these lines of evidence indicate that the observed relationships among nutritional condition and diet 

breadth/quality are more likely to reflect animals’ behavioral adjustment to their state than intrinsic 

preferences consistently leading to a competitive advantage and good nutritional condition. Parsing the 

roles of inherited or learned preference versus state-dependent foraging in generating diet variation 

among free-ranging animals represents a fruitful avenue for future research. 

Caveats and considerations  

We focused on the roles of spatial heterogeneity and state-dependent behavior in driving individual 

variation, but predation risk also modulates these relationships. A study conducted in Gorongosa before 

the return of wild dogs and leopards in 2018 documented a “landscape of fearlessness” in which bushbuck 

increasingly occupied the floodplain from 2002–2016 (Atkins et al 2019). In this way, risk relaxation 

enabled bushbuck to capitalize on the ecological opportunity presented by high-quality forage in the 

floodplain, contributing to the broad-scale pattern of individual variation documented here; the recovery 

of large carnivores in the park may increasingly limit bushbuck to habitats with more concealment cover 

and thereby reduce the extent of individual differentiation at the population level. Crucially, however, all 

of the same patterns observed at the population level also held within the woodland habitat historically 

preferred by bushbuck (Tinley 1977), and predation on bushbuck was accelerating during our study 

(Bouley et al. 2021), indicating that our conclusions are not an artifact of predation regime.   

Our results are based on just 15 individuals, yet this sample size is commensurate with previous studies 

investigating mechanisms of diet selection by large mammalian herbivores (e.g., Cerling et al. 2006, 

Atkins et al. 2019). Moreover, we know of no previous study that has quantified and compared large-

herbivore diets with high taxonomic resolution via longitudinal sampling of known individuals. 

Collecting multiple fecal samples per individual allowed us to characterize individual diets more 

thoroughly than in previous studies, most of which have used single samples of fecal or gut contents to 

represent individual niche width (e.g., Costa et al. 2008, Araujo et al. 2009, Redjadj et al. 2014, Pansu et 

al. 2019b). Although analyzing single samples would not have qualitatively altered the conclusions of this 

study (to the contrary, it would have tended to exaggerate the degree of individual differentiation; see 

Figure 1.2), the fact that even ≥6 samples per individual failed to fully capture individual dietary richness 
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is a caveat to our quantitative metrics. The potential impacts of overestimating individual dietary 

differentiation by under sampling depends on the question being asked. For example, some studies of 

individual diet variation specify a simple threshold for determining whether a population is comprises 

specialist or generalist individuals (e.g., Vander Zanden et al. 2013). However, our results support the 

contention (e.g., Novak and Tinker 2015) that measures of diet variation are highly sensitive to temporal 

scale and intensity of sampling and that reliance on threshold values may therefore compromise inference 

when sampling intensity is insufficient to robustly quantify individual-level diet breadth.  

Conclusions 

Foraging decisions are conditioned upon a variety of extrinsic and intrinsic constraints. Empirical 

evidence increasingly shows that broad-scale patterns of habitat selection can constrain fine-scale 

differences in resource use among individuals (e.g., Zerba and Collins 1992, L’Hérault et al. 2013, Feiner 

et al. 2019), and theory shows that these differences can scale up to exert strong (albeit variable) effects 

on interspecific interactions and population dynamics (Bolnick et al. 2011, Hart et al. 2016, Stump et al. 

2022). Understanding the mechanistic bases of individual variation is thus crucial to understanding 

community organization. By drawing on an uncommon wealth of information on landscape structure, 

animal movement, diet composition, and nutritional condition, we have shown that spatial heterogeneity 

and state dependence interact with space use to regulate individual variation. Accounting for these factors 

is now more possible than ever and should lead to rapid progress in understanding both the causes and 

consequences of individual specialization.  

Our study provides empirical support for OFT as a framework for generating and testing hypotheses 

about the behavioral mechanisms that drive variation in individual realized niche width in the context of 

energy supply and demand. Given their strong mechanistic underpinnings, we propose that the 

relationships documented in our study are likely generalizable across an array of taxa and ecosystems. We 

encourage future tests of this proposition that focus on parsing the relative roles of extrinsic versus 

intrinsic constraints in determining individual niche width.  
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a catastrophic tropical cyclone 
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F. Parrini, J. Marshal, R. M. Pringle, and  R. A. Long. 2022. Trait-based sensitivity of large mammals to a 

catastrophic tropical cyclone. In Revision: Nature. 31 December 2022.  

 

Abstract 

Extreme climatic events are becoming more frequent and intense. Body size and other traits may mediate 

animals’ vulnerability to such events, but it has rarely been possible to test this idea. We show how 

Mozambican megafauna responded to Cyclone Idai, the deadliest storm on record in Africa, across scales 

ranging from individual decisions in the hours after landfall to community-level responses 18 months 

later. Animals occupying low-elevation habitats exhibited strong spatial responses to rising floodwaters. 

Body size predicted species’ numerical responses: small-bodied species exhibited the greatest declines. 

We trace this sensitivity to limited mobility, which increased likelihood of death during the flood and 

constrained animals’ capacity to withstand food shortage afterwards. Our results identify trait-based 

mechanisms underlying animal responses to severe weather and can inform impact-mitigation and 

adaptation strategies. 

 

Main Text 

Extreme climatic events—statistically rare, discrete weather events with intensity outside normal 

variability (Smith 2011)—are becoming more frequent and severe (Ummenhofer & Meehl 2017). This 

trend includes tropical cyclones (Elsner et al. 2008, Wang & Toumi 2021; but see, Chand et al. 2022), 

prompting urgent calls for research on cyclones’ ecological effects (Smith 2011, Pruitt et al. 2019, Lin et 

al. 2020). However, the unpredictable nature of severe cyclones makes them difficult to study (Jentsch et 

al. 2007). While remote sensing and long-term vegetation plots facilitate assessment of cyclone effects on 

landscapes (Zeng et al. 2009, Tanner et al. 2014), there are comparatively few direct studies of animals, 

and most of those involve small-bodied species on oceanic islands (Wiley et al. 1993, Spiller & Losos 

1998, Schoener et al. 2004, Schoener & Spiller 2006, Grant et al. 2017, Donihue et al. 2008). In the 

1990s, a succession of hurricanes struck small experimental islands in the Bahamas, supplying unusually 
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rich insight into the effects of cyclones on animal communities and suggesting that species’ responses 

were predictably related to their traits: larger species (lizards) were more resistant to cyclone effects, 

whereas better dispersers (arthropods) recovered faster (Spiller & Losos 1998). These results suggest a 

general trait-based theory of animal robustness—defined as the maintenance (resistance) and recovery 

(resilience) of normal abundance and behavior patterns (Levin et al. 2008)—to climatic catastrophes 

(Schoener & Spiller 2006). Yet, the scalability of these principles to large animals in continental systems, 

where body size and dispersal ability are generally linked (Noonan et al. 2020), is unknown. Moreover, 

no study to our knowledge has been able to track the individual-level behavioral mechanisms that 

underpin community-level responses to cyclones. 

We investigated how a diverse assemblage of large mammals in Mozambique’s Gorongosa National Park 

responded to Cyclone Idai, one of the strongest tropical cyclones on record in the Southern Hemisphere 

(Warren 2019, Charrua et al. 2021). The historically abundant megafauna of Gorongosa’s mesic savannas 

(842 mm rainfall yr-1) and productive floodplain grasslands was reduced by >90% during the 

Mozambican Civil War (1977–1992) but have since recovered dramatically (Stalmans et al. 2019). 

Ongoing long-term research on the movements, distribution, diets, and population dynamics of 13 

herbivore species—from 17-kg oribi to 4000-kg elephant (Kingdon 1997)—and their predators (lion and 

African wild dog) provided a unique opportunity to assess the impacts of an extreme climatic event across 

a community comprising some of the world’s largest terrestrial animals (Figure B.1). Using multiple data 

streams, including GPS telemetry, we compared animal behaviors in the hours, days, and months before 

Cyclone Idai made landfall to those observed after the cyclone and during the same intervals in normal 

years (Appendix B). We tested two general trait-based hypotheses. First, species affiliated with woody, 

higher-elevation habitats are more robust to cyclones than those affiliated with open, lower-elevation 

habitat, which is more prone to flooding (Figure B.2). Second, species’ robustness to cyclones scales 

positively with body size, because larger mammals have (a) higher mobility and can more easily escape 

affected habitats and (b) lower mass-specific metabolic rates and therefore greater ability to buffer the 

impacts of reduced food supply in the months after the storm.  

Cyclone Idai made landfall on 15 March 2019 (the end of the wet season in a typical year) and passed 

directly over Gorongosa (~100 km inland), bringing maximum wind speeds >188 km hr-1, torrential rains 

of >200 mm in <24 hours, and floodwaters >5 m deep around Lake Urema at the core of the park (Figure 

2.1, Figures B.3-4).  

Some animals were unable to evade the rising floodwaters: three of eight GPS-collared bushbuck, the 

smallest individually monitored herbivore species, died within a week of landfall. The bushbuck that 

perished in the flood were much smaller than the survivors (mean 35.7 vs. 46.0 kg) and included the  
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Figure 2.1. Cyclone Idai led to extensive flooding in Gorongosa. (A) After making landfall on 15 March 2019, 

Idai’s central path (black line, black dots illustrate position every 6 hours, local time; Global Disaster Alert and 

Coordinate System, 2019) passed within 50 km of Gorongosa National Park (black polygon). (B) Heavy rains from 

Idai inundated a network of 37 active flood sensors in the park; flood extent did not return to pre-cyclone levels until 

roughly 1 June (Julian day 152). (C) Within one week of landfall, flooding extent (areas inundated >50 cm) 

expanded by 388% (one week prior = 24.1 km2; one week after = 117.7 km2; total sensor area = 165.8 km2) and 

maximum flood depth increased by 195% (before = 2.0 m; after = 5.9 m). Lake Urema (black polygon) and roads 

(black lines) are shown to facilitate comparison. (D) Hourly GPS fixes of two representative bushbuck, one that 

survived (black silhouette) and another that died (white silhouette). Purple points show positions in the month before 

the cyclone; yellow points show positions in the month afterwards; red point shows the site of death. The surviving 

individual left its home range and moved up the elevational gradient, away from Lake Urema, using termite mounds 
as refuges from the flood (inset) before making a beeline up the elevational gradient and establishing a new home 

range ~3.5 km away. The individual that died began moving upslope but did not outpace the rising floodwaters and 

died within 500 m of its original home range. This pattern was consistent across the 5 bushbuck that survived and 

the 3 that died (Figure B.5). 
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smallest collared male and smallest two collared females (Figure B.5a,b). Although these individuals 

selected for higher elevation, they did not avoid the flood edge and died in areas inundated with >1.5 m of 

water (Figure 2.1e, Figure B.5c). Notably, bushbuck selected for high ground at both macro- and 

microtopographic scales, with individuals moving upslope and selecting for termite mounds (Figure 2.2a), 

which had become tiny islands; the movement path of one surviving bushbuck shows how the animal 

‘hopped’ from mound to mound, passing quickly through the flooded area in between (Figure 2.1d). We 

did not detect any mortalities among four larger-bodied herbivore species for which known-fate data were 

available [nyala (98 kg, n = 4), kudu (210 kg, n = 12), sable (223 kg, n = 3), and elephant (4,000 kg, n = 

13)]. Many surviving GPS-collared herbivores moved out of their previously established home ranges, 

selecting higher-elevation areas away from floodwaters, before eventually settling in areas of relative 

safety (Figure 2.2, Figure B.6). Affiliation with floodplain habitat strongly predicted the degree of 

displacement from home ranges, whereas body mass did not have a significant effect after accounting for 

habitat affiliation (Figure B.7). 

Data from an established 300-km2 camera-trap grid [n = 48-60 cameras in 5-km2 hexagonal cells; Figure 

B.8 (Gaynor et al. 2021)] showed that other herbivore species shifted their space use in similar ways. We 

observed strong interactive effects of time since cyclone landfall and distance to Lake Urema on 

distribution of the three most common herbivore species [impala (56 kg), warthog (83 kg), and waterbuck 

(215 kg)] (Table B.1). In general, the cyclone pushed herbivores away from the lake into elevated 

woodland habitats, increasing herbivore activity in those areas far above levels observed in typical years 

(Figures B.9-10). Together, GPS-collar and camera-trap data indicate that body size, mobility, and 

behavioral flexibility were key for surviving the immediate aftermath of the cyclone.  

In addition to crowding herbivores into elevated woodlands, Cyclone Idai altered forage availability 

during the subsequent season. The extreme and unseasonal flooding after Idai reversed the typical 

phenological progression of understory plants in the sparsely wooded flood zone (Figure 2.3a, Figure 

B.11a). Vegetation in this area remained significantly less productive than usual for three months after the 

cyclone (March–May) (Figure 2.3a, Figure B.11a). By contrast, productivity in the flood zone was 

significantly higher than usual in the late dry season after Idai (October), presumably due to atypically 

high water availability (Figure 2.3a, Figure B.11a). These effects were far less pronounced in elevated 

woodland areas that were not flooded after Idai (Figure B.11b).  

Cyclone-induced changes in forage availability, coupled with the sustained upland shift in herbivore 

distribution, led to changes in herbivore diets. Herbivores generally ate a significantly different suite of 

plant taxa in 2019 than in 2018 (Figure B.12). Although these multidimensional differences varied across 

species and seasons, several broad trends emerged. After Idai, herbivore diets tended to comprise a  
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Figure 2.2. Herbivores changed their movement behavior to avoid cyclone-induced flooding. (A) Coefficients 

and 95% confidence intervals (CI) from step-selection functions (SSFs) for 39 GPS-collared herbivores of 5 species, 
indicating the extent to which animals selected for high elevation and termite mounds and avoided floodwaters, in 

the two weeks before (purple) and two weeks after (yellow) Cyclone Idai passed over Gorongosa. CIs not 

overlapping zero indicate a significant influence of the covariate on movement behavior; CIs not overlapping each 

other indicate significant differences before vs. after landfall. All herbivores increased their selection for higher 

elevations and their avoidance of floodwaters, significantly so for bushbuck, kudu, and elephant. (B) Many 

herbivores departed their home ranges in the weeks after Idai made landfall (overlap of utilization distributions via 

95% kernel density estimation: thin yellow lines, individuals; bold yellow line, mean), a trend not observed in 

periods unaffected by a cyclone (purple lines). The degree of displacement scaled negatively with species’ degree of 

floodplain association (Figure B.7). 

 

smaller proportion of grasses (Figure B.13), a more diverse array of plant families (Figure B.14), and 

plant species that were taller (Figure 2.3b) and less nutritious (lower in digestible protein, phosphorus, 

and sodium, higher in lignin; Figure 2.3c, Figure B.15) than in non-cyclone years, consistent with a shift 

toward ‘woodier’ diets (Potter et al. 2022). Dietary niche differences among herbivore species were also 

stronger in the post-cyclone early dry season (July) than in normal years (Figure 2.3d). The depletion of 

understory food resources and crowding of survivors into high and dry areas likely intensified   
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Figure 2.3. Cyclone-induced flooding depleted understory forage and altered herbivore diets. Points and error 

bars show mean ± SE. (A) Mean monthly normalized difference vegetation index (NDVI) values, a proxy for 

aboveground productivity, in the flood zone (areas that were dry the week before Idai but under >0.5 m of water 
within two weeks after; see inset) in the year of Idai (2019; yellow) and in 20 other years (2000-2018, 2020; purple). 

Flooding from Idai significantly decreased productivity for three months after landfall (March–May) but 

significantly increased it in the late-dry season (October). Gray shading shows periods in which we sampled 

herbivore diets. (B-D) On average relative to non-cyclone years (2016, 2018), herbivore diets after Idai (B) 

comprised taller plant species (linear mixed-effects models: late-wet, β2018 = -0.29, SE = 0.07, P < 0.001; early-dry, 

β2016 = -0.40, SE = 0.09, P < 0.001; β2018 = -0.25, SE = 0.08, P = 0.003; late-dry, β2018= -0.10, SE = 0.07, P = 0.17); 

(C) contained less protein in the early-dry season (linear mixed-effects models: late-wet, β2018 = -0.005, SE = 0.02, P 

= 0.82; early-dry, β2016 = 0.04, SE = 0.02, P = 0.11; β2018 = 0.05, SE = 0.02, P = 0.03; late-dry, β2018 = 0.02, SE = 

0.03, P = 0.38); and (D) were more strongly differentiated between species, as indexed by the mean R2 of pairwise 

perMANOVA between each pair of 13 species in the early dry season (26) (mixed-effects models with beta-error 

distribution and per-species random intercepts: late-wet, β2018 = -0.09, SE = 0.08, P =0.26, early dry, β2016 = -0.37, 

SE = 0.04, P < 0.001; β2018 = -0.40, SE = 0.04, P < 0.001); late-dry, β2018 = -0.06, SE = 0.04, P = 0.11). 

 

interspecific competition, forcing herbivores to differentiate their diets and accept relatively low-quality 

forage (Pansu et al. 2022).  

The post-cyclone period of limited food availability and quality was associated with reduced nutritional 

condition (Appendix B) in small- to mid-sized herbivores (Figure 2.4). Bushbuck and nyala, the two 

smallest GPS-collared herbivores (≤100 kg), were in significantly worse condition after Idai (June-July 

2019) than in previous years (June-July 2014–2018). The nutritional condition of kudu, a larger and 
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wider-ranging congener with comparable dietary habits (Daskin et al. 2022), was unaffected by the 

cyclone (Figure 2.4a). Coupled with evidence of low diet quality after Idai, both in general (Figure B.15) 

and for these species in particular (Figure B.16), this result supports our hypothesis that larger animals 

were better buffered against nutritional limitation (Peters 1983).  

The disproportionate individual-level effects of Cyclone Idai on small-bodied, floodplain-associated 

grazers translated into skewed population-level impacts the following year. From 1994–2018, the 13 

herbivore populations in this study had grown almost monotonically (Stalmans et al. 2019). In contrast, 

the post-cyclone aerial survey in October-November 2020 (18 months after landfall) documented the first 

substantial population declines for several of these species since the end of the Mozambican civil war 

(Figure B.17). Oribi, reedbuck, warthog, hartebeest, sable, and waterbuck—small to medium-sized (17–

223 kg) grazers with moderate-to-high floodplain affiliation—declined by 12–53% (median 34%). In 

contrast, larger-bodied species with moderate-to-low floodplain affiliation—wildebeest, buffalo, and 

elephant (214–4,000 kg)—each increased by ~27%. In a set of 16 candidate linear models including main 

effects and interactions of herbivore size, trophic guild (% grass consumption), and habitat affiliation 

(Table B.2), body mass alone best explained proportional change in abundance (R2 adj. = 0.28, P = 0.04) 

(Figure 2.4b). Floodplain affiliation alone was the 2nd-best model (∆AICc = 0.96, R2 adj. = 0.22, P = 

0.06) (Figure 2.4c). These relationships were not observed across normal years: neither herbivore body 

mass nor floodplain association predicted proportional changes in species’ abundance from 2014-2016 or 

2016-2018 (all P > 0.3) (Figure 2.4b,c).  

Waterbuck, a 215-kg floodplain-associated grazer, exemplified this trend. From 1994 to 2018, the 

waterbuck population grew logistically from < 1,000 to >55,000 individuals (Stalmans et al. 2019, Becker 

et al. 2021). In the 2020 census, observers found an unprecedented number of dead waterbuck, prompting 

them to record carcass statistics. In total, 3,300 carcasses were estimated from a systematic transect 

survey, almost exclusively in the floodplain (7.44 km2 vs. 0.24 km2 in woodland) (Figure B.18). These 

mortalities accounted for roughly half of the 6,800-individual difference in abundance between 2018 and 

2019 and contributed to the first definite waterbuck population decline (-12%) in >25 years. 

The two extant large-carnivore species in Gorongosa were comparatively robust to cyclone disturbance. 

We did not observe any mortalities among 22 carnivores for which known-fate data were available [14 

wild dogs, 30 kg; 8 lions, 190 kg; (Kingdon 1997)]. Like herbivores, GPS-collared wild dogs and lions 

increased their selection for higher elevations and their avoidance of floodwaters in the weeks after 

landfall (Figure B.19a) and showed some displacement from their home ranges in the weeks after the 

cyclone (Figure B.19b). Lion diets were unaffected by the cyclone, while wild dog diets shifted in concert 

with the altered distribution of prey, with waterbuck temporarily displacing bushbuck as the predominant  
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Figure 2.4. Cyclone impacts on herbivore condition and abundance varied with body size. (A) Nutritional 

condition of bushbuck and nyala, the two smallest GPS-collared antelopes, was significantly lower after Idai (2019) 

than in other years (2014–2018; asterisks show significant differences between groups in Welch’s two-sample t-

tests, bushbuck: t = 6.74, df  = 28.5, P < 0.001; nyala: t = 4.47, df = 10.2, P = 0.001; kudu: t  = 0.61, df = 36.9, P = 

0.55). Boxes show median and interquartile range, whiskers show outer quartiles, points show outliers. (B-C) 

Proportional change in abundance between aerial counts in 2018 and 2020 (yellow points) was best predicted by (B) 
herbivore body size, with the smallest herbivores experiencing the steepest declines, and (C) species’ affiliation with 

floodplain habitat (Table B.2, Figure B.17). These traits did not predict changes in abundance between normal years 

(2014–2016, 2016–2018; purple points), either when considered together (as plotted) or separately (2014-2016: 

βlog(Mass) = 0.01, adj. R2 = -0.09, P = 0.93; βfloodplain = -0.29, adj. R2 = -0.04, P = 0.46; 2016–2018: βlog(Mass) = 0.01, adj. 

R2 = -0.09, P = 0.96; βfloodplain = -0.31, adj. R2 = -0.05, P = 0.51). Body size and floodplain affiliation were 

uncorrelated (Figure B.1). 

 

prey species; this pattern reverted by the late dry season (Figure B.20). Moreover, both lion and wild dog 

populations increased between 2018 and 2020 (Figure B.17). Several factors likely contributed to the 

robustness of carnivores relative to herbivores, including their high mobility and large home ranges in 
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stark contrast to herbivores [mean pre-Idai home ranges for lion (126 km2) and wild dog (94 km2) were, 

respectively, 25- and 200-fold larger than similarly-sized herbivores (kudu, 5 km2; bushbuck, 0.4 km2)], 

and the abundance of unusually vulnerable and densely concentrated food.  

Our results provide strong support for trait-based hypotheses about animal robustness to climatic 

catastrophes and show how responses propagate across multiple spatiotemporal scales and levels of 

organization, from individuals to populations to the community. Small body size and association with 

exposed habitat made herbivores less resistant to the effects of a powerful cyclone across timescales 

ranging from hours and days (differential ability to evade rising floodwaters) to more than a year 

(differential degree of nutritional shortfall and ability to withstand it). Our findings are broadly consistent 

with previous work linking body size and mobility to cyclone robustness on small islands (Spiller et al. 

1998), supporting the scalability of these relationships and the proposition (Schoener & Spiller 2006) that 

a general trait-based theory may enable researchers to predict the impacts of extreme events across 

terrestrial animals at large.  

More time will be needed to know whether Cyclone Idai has long-lasting effects on community structure, 

and how a more frequent and/or intense cyclone regime will affect community dynamics. For example, it 

is possible that the higher fecundity of small-bodied species will enable faster recovery, offsetting the 

costs of low resistance on long-term robustness (cf. Spiller et al. 1998). Yet, it is noteworthy that Idai 

reversed the prevailing trend in community reassembly back toward the historically dominant large-

bodied species, possibly signaling a tipping point in Gorongosa’s postwar recovery trajectory and 

highlighting the role of disturbance in rewilding efforts. As the frequency of severe weather events 

increases in concert with increasing efforts to restore depleted megafaunal assemblages (Perino et al. 

2019), predicting how severe perturbations will filter community structure is a pressing goal (Thibault & 

Brown 2008, Betts et al. 2019). Although traits conferring fast population growth (small body size) and 

high visibility (open habitat affiliation) may be appealing for restoration and ecotourism initiatives, these 

same traits increase vulnerability to extreme climatic events. 
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Abstract 

Because climate change is likely to outpace the ability of large, K-selected mammals to respond via 

genetic adaption, behavioral plasticity will likely be many species’ primary buffer against heat stress. 

However, our understanding of how large mammals prioritize competing ecological pressures in changing 

environments and the consequences of that prioritization for fitness remain largely unknown. Here, we 

combine movement and demographic data with spatiotemporally explicit predictions of thermoregulatory 

costs from a biophysical model to evaluate behaviorally-mediated effects of the thermal environment on 

survival and reproductive success of endangered African wild dogs (Lycaon pictus). We find that 

fecundity is constrained by competition among packs wherein larger packs exclude smaller ones from 

thermally favorable habitats that reduce energetic constraints of heat dissipation on the pregnant female, 

freeing additional energy to devote to production and resulting in larger litters. Conversely, survival of 

pups to weaning is not mediated by thermoregulatory costs but likely by improved nutritional 

provisioning stemming from the better hunting success of larger packs. Our results suggest that (1) 

thermal refugia are a key component of habitat quality for wild dogs that will likely increase in 

importance as the climate warms, (2) behavioral responses to variation in the thermal landscape have 

important effects on fitness of this endangered carnivore, and (3) behavioral plasticity at the pack level is 

constrained by pack size and corresponding competitive ability.     

 

Main Text 

Introduction 

Behavioral plasticity is the central mechanism by which animals cope with rapid environmental change 

(Huey et al. 2003, Beever et al. 2017). The ability to shift ranges in response to human development, 

employ new foraging strategies to exploit increasingly fragmented habitats, or use thermal refugia to 

buffer the impacts of rising temperatures will shape the trajectories of animal populations in the 
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Anthropocene (Kearney et al. 2009, Sih et al. 2010, van Buskirk 2012). Behavioral responses to 

environmental variation, however, are often constrained by other ecological factors. For example, 

competition and predation risk shape animal movement decisions and can restrict access to favorable 

habitats (Fretwell and Lucas 1970, Lima and Dill 1990). Understanding the nature and strength of such 

tradeoffs and identifying thresholds of risk and reward that modulate the prioritization of competing 

ecological pressures will be critical for predicting population and community dynamics in a rapidly 

changing world.  

Because reproduction (pregnancy and lactation) dramatically increases endogenous heat loads (Speakman 

and McQueenie 1996, Urison and Buffenstein 1995, Bowers et al. 2009), the ability to dissipate heat can 

constrain reproductive performance even when energy supplies are effectively unlimited (‘heat 

dissipation limit theory’; Król et al. 2003, Król and Speakman 2003a,b, Speakman and Król 2010a,b). 

Increasing temperatures over the next century may exacerbate this constraint, especially for large, heat-

sensitive mammals faced with tradeoffs between costs of thermoregulation and other factors. Although 

large mammals possess considerable capacity for adjusting their behavior temporally (e.g., by shifting 

from diurnal to nocturnal or crepuscular activity; du Toit and Yetman 2005, Owen-Smith and Goodall 

2014, Gaynor et al. 2018) and/or spatially (e.g., by selecting thermally favorable habitats; Kinahan et al. 

2007; van Beest et al. 2012; Long et al. 2014, 2016) to reduce costs of thermoregulation, such changes 

often carry costs of a different nature. For example, many apex predators (e.g., African lion, Panthera 

leo) hunt at night, increasing the risk to prey or competitors of shifting away from diurnal activity (Cozzi 

et al. 2012, Veldhuis et al. 2020). Dominant competitors also exclude others from favorable areas (i.e., 

‘ideal despotic distribution’, Fretwell 1972), limiting access to spatially restricted thermal refugia 

(Hamilton et al. 2016, Legault et al. 2020, Veldhuis et al. 2020). Long-lived, iteroparous animals are well 

known for favoring their own survival over reproductive investment (Gaillard et al. 2000, Ellison 2003, 

Brown and Sibly 2006, Therrien et al. 2008), and thus temperature thresholds at which costs of 

thermoregulation begin to outweigh direct mortality risks are likely to be relatively high in such species. 

This life-history strategy, in combination with limits to heat dissipation imposed by large body size, 

highlight the potential for climate warming to directly impact reproductive success, and thus population 

performance, of large mammals.   

African wild dogs (Lycaon pictus; hereafter, ‘wild dogs’) are large tropical mammals that may be 

particularly vulnerable to climate warming. As cursorial predators, wild dogs commonly travel at >10-km 

per day while foraging (Hubel et al. 2016a), expending energy each day at levels approaching 

physiological limits on sustained metabolic rates (Hammond and Diamond 1997, Gorman et al. 1998). 

The energetic extremes experienced by wild dogs make them especially vulnerable to constraints and 
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tradeoffs related to heat dissipation. Previous work has shown that higher ambient temperatures are 

associated with reduced hunting time (Woodroffe et al. 2017), shifts in reproductive phenology (McNutt 

et al. 2009, Abrhams et al. 2022), and declines in reproductive success across three sub-Saharan 

populations (Woodroffe et al. 2017). As obligately social animals, wild dogs rely on helpers to take down 

larger prey (Creel and Creel 1995), defend kills from kleptoparasitism (Fanshawe and Fitzgibbon 1993), 

and provision pups (Forssman et al. 2018, Jordan et al. 2022). Pack size is thus a critical component of 

wild dog’s ability to survive and reproduce (Courchamp and Macdonald 2001, Creel and Creel 2015), 

with larger packs garnering better success in hunting (Creel and Creel 1995) and defense (Carbone et al. 

1997, Jackson et al. 2017) than smaller packs. Given these life history traits, wild dogs make an ideal 

study species to evaluate whether individual behaviors can mitigate climatological constraints and 

whether competition mediates use of favorable thermal environments.   

Here, we combine movement and demographic data with output from a spatiotemporally explicit 

biophysical model to assess fitness consequences of space-use decisions by wild dogs in northern 

Botswana. Our objectives were to (1) evaluate whether and to what degree wild dogs buffered themselves 

against effects of climate on reproductive success by optimizing selection of the thermal landscape, and 

(2) identify ecological mechanisms underpinning differences in heat stress, and associated fitness 

consequences, among packs. In accordance with heat dissipation limit theory (Speakman and Król 

2010b), we hypothesized (H1) that variation in use of the thermal landscape (i.e., spatiotemporal variation 

in energy and water costs of thermoregulation) would lead to corresponding variation in reproductive 

performance among packs. We predicted that (1) packs that use less costly areas when the reproductive 

female is pregnant will produce larger litters than packs that use costlier areas, and (2) packs that rear 

their offspring in less costly areas will recruit proportionally more young to weaning than those that use 

costlier areas while the reproductive female is lactating. We also hypothesized (H2) that free-ranging wild 

dogs assess costs of thermoregulation as a critical component of habitat quality and that more dominant 

competitors would exclude subordinates from the least costly habitats as predicted by ideal despotic 

distribution theory (Fretwell and Lucas 1969, Fretwell 1972). Because wild dogs are territorial and larger 

packs exclude smaller packs from contested areas (Creel and Creel 2002, Jackson et al. 2017), we used 

pack size as an index of competitive ability. Accordingly, we predicted that larger packs would 

consistently show stronger selection for low-cost habitats, and that pack size would be positively 

correlated with litter size and recruitment rates. 

Results and discussion 

We first evaluated the relative physiological costs experienced by a breeding female in our study area at 

each phase of the communal pup rearing cycle (Malcom and Marten 1982; Figure 3.1-2). Wild dog  
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Figure 3.1. Microclimate and physiological data were used to parameterize biophysical models and estimate 

spatiotemporally explicit costs of thermoregulation (evaporative water loss, L/D) for African wild dogs. (A) 

We used publicly available climatological data to quantify the thermal environment at a 1-km2 spatial resolution and 

weekly temporal grain (2012-2016) across our study area in northern Botswana. Two pack home ranges (white 

polygons; estimated via 99% kernel density estimation) during the pregnancy phase of the pup rearing cycle (see: 

Figure 2) are drawn for comparison with panel (B). We integrated output from the microclimate model with 

morphological and physiological data from (C) nonreproductive, (D) pregnant, and (E) lactating wild dogs to solve 

the heat balance equation and estimate the evaporative water loss required for each demographic to maintain 

homeothermy in the modeled environment. Panel (B) shows spatial variation in predicted evaporative water loss 
(L/D) for a pregnant female to maintain heat balance in June 2012. Pack home ranges (white polygons; during the 

pregnancy phase of the pup rearing cycle (see: Figure 2) illustrate differential use of the energetic landscape: the 

northern pack occupies a more energetically costly habitat than the southern pack.  

 

reproduction is highly seasonal, with one female per pack breeding at the start of winter and moving with 

the pack throughout gestation. Prior to parturition, the pack selects fixed den sites at which the 

reproductive female typically remains to rear her pups for 3 months post birth while the pack communally 

provisions her and supplements her dependent pups (Malcom and Marten 1982; Figure 3.2a). We used the 

biophysical model, Niche Mapper (Porter and Gates 1969, Porter and Mitchell 2006, Kearney and Porter 

2009, Kearney and Porter 2016, Mathewson et al 2020, Rogers et al. 2021, Campbell-Staton et al. 2021, 

Verzuh et al. 2022), to estimate the (1) hourly rates of evaporative water loss necessary for wild dogs to 

achieve heat balance for the breeding female during the course of an average day in each phase of the pup 

rearing cycle (non-reproductive, pregnant, and lactating) at a representative location in our study area 
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(Figure 3.2b) and (2) mean daily rates of evaporative water loss necessary to maintain homeothermy at a 

1-km2 spatial resolution at weekly intervals in each stage of the pup rearing cycle from 2012–2016 

(Figure 3.1b, Figure 3.2c, Tables C.1-3). Costs of thermoregulation were substantially higher for 

reproductive than non-reproductive individuals at both hourly (22% increase in mean rate of evaporative 

water loss; reproductive = 0.005 mL/s; nonreproductive = 0.004 mL/s) and daily (110% increase in mean 

rate of evaporative water loss rates; reproductive = 0.26 L/D; nonreproductive = 0.12 L/D) time scales 

(Figure 3.2b,c). This result highlights the potential for heat-dissipation capacity to limit reproductive 

performance of wild dogs and for behavioral strategies that reduce thermoregulatory costs to influence 

fitness.    

 

Figure 3.2. Costs of thermoregulation vary over phases of the pup rearing cycle. (A) The average yearly pup 

rearing cycle in northern Botswana consists of a nonreproductive phase (yellow) from August–March, a ~70 day 

pregnancy phase (light blue) in which pregnant females move with the pack until whelping in early June, and a 3-

month lactation phase (dark purple) during which pups are guarded in dens. Peak lactation occurs in the first month 

after parturition, during which the reproductive female and pups remain in a den and pups are fully dependent on 

milk for sustenance. During subsequent weeks of the ~3-month denning period, pups begin to wean by venturing 

above ground to solicit regurgitation of predigested meat from pack mates. (B) Hourly evaporative water loss 

predicted for an average day during each phase of the pup rearing cycle varies substantially, with lactating females 

incurring the greatest costs despite being sedentary. The two daily peaks in energetic costs show the added heat 

dissipation load incurred by crepuscular hunting activity during the nonreproductive and pregnant phases of the pup 

rearing cycle; costs during all other hours assume individuals are at rest in the shade. (C) The distribution of 
predicted costs across the study area for resting African wild dogs during each phase of the pup rearing cycle 

illustrate significantly higher costs for reproductive than for nonreproductive individuals.   
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We next evaluated whether pregnant wild dogs could reduce thermal constraints on reproduction by using 

less costly habitats. To quantify the thermal costs of space use during pregnancy, we (1) partitioned 

hourly location data from a GPS collared individual in each pack to encompass the 70 days prior to 

whelping (gestation length for wild dogs; Monfort et al. 1997) for the 12 litters for which we had both 

movement and demographic data (Table C.4), (2) extracted weekly evaporative water loss estimates for a 

pregnant wild dog from each raster cell to the GPS locations that intersected that cell during the 

corresponding week, and (3) found the mean of location-specific values to estimate the typical 

evaporative water loss (L/D) required for the breeding female in each pack to maintain homeothermy 

during the pregnancy phase of the pup rearing cycle. We then assessed relationships between litter size 

and both use (i.e., rate of evaporative water loss across GPS points) and selection (use relative to 

availability at the landscape and pack-range scales) of the thermal landscape (Figures C.5-6). We 

quantified availability by extracting evaporative water loss to random points distributed across the 

landscape or pack-range. Previous work has suggested that pack size has a positive impact on 

reproductive performance by increasing hunting success, and thus nutrient intake by the breeding female 

during gestation (Courchamp and Macdonald 2001). We therefore also evaluated the direct influence of 

pack size on litter size.  

Larger packs generally had larger litters, though not significantly so (Figure 3.3a). We find packs’ use of 

the thermal environment during pregnancy underpins this relationship. Breeding females in packs that 

used costlier areas during the pregnancy phase of the pup rearing cycle produced significantly smaller 

litters (Figure 3.3b). The direction of this relationship remained consistent when we analyzed selection 

rather than use of the thermal landscape, although the selection results were not statistically significant at 

either scale (Figures C.5-6). These results support our prediction that reproductive performance in wild 

dogs is constrained by the ability of pregnant females to dissipate the additional endogenous heat 

generated during fetal development. To our knowledge, our study is the first to report of behaviorally-

mediated impacts of the thermal environment on fecundity of a wild large mammal. Our results contribute 

to growing literature on impacts of the thermal environment on activity budgets (Woodroffe et al. 2017, 

Rogers et al. 2021), accumulation of fat reserves (van Beest et al. 2013, Long et al. 2016), and 

reproductive phenology (McNutt et al. 2019, Abhrams et al. 2022) of free-ranging large mammals, and 

align with previous research on the impacts of heat stress on fecundity of mammals in agricultural or lab 

environments (Hansen 2009, Takahashi 2012).  

We next considered the potential role of competition in generating heterogeneity among packs in use of 

the thermal landscape during pregnancy. We tested the predicted that if African wild dogs assess costs of 

thermoregulation as a component of habitat quality, packs should compete for access to thermally  
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Figure 3.3. Use of the energy landscape constrains litter size. (A) Pack size had a positive, nonsignificant (α = 

0.10) effect on litter size (generalized linear model with a Poisson error distribution: βPack size = 0.04, SE = 0.03, P = 

0.19), which aligns with previous research underscoring the importance of pack size for wild dog reproductive 

success (Courchamp and Macdonald 2001, Creel and Creel 2015). Unlike previous studies that credit this 

relationship to increased nutritional provisioning, we find that pack’s use of the thermal environment is the 

mechanism driving this relationship. (B) Pregnant females in packs that used habitats with lower costs of 

thermoregulation (i.e., evaporative water loss, L/D) had significantly larger litters (pups counted when first 
emerging from the den) than females in packs that used costlier habitats during the pregnancy phase of the pup 

rearing cycle (generalized linear model with a Poisson error distribution: βEWL = -48.8, SE = 26.2, P = 0.07). (C) Use 

of the energy landscape was strongly associated with pack size: larger packs used less costly habitats than smaller 

packs (linear model: βPack size = -0.001, SE = 0.0001, P < 0.001). Together, these results suggest that larger packs 

competitively exclude smaller packs from higher-quality, more thermally favorable habitats, with concomitant 

effects on reproductive performance. 

 

favorable habitats, by fitting a linear model with use of the thermal landscape during pregnancy 

(quantified as described above) as the response and pack size as the predictor variable. We additionally 

considered the role of variation in the nutritional landscape in driving pack distribution. In our study area, 

wild dogs prefer to hunt in grassland or mixed woodland habitats, which are selected by wild dogs’ 

favored prey (impala, Aepyceros melampus) (Alting et al. 2021). Accordingly, we also evaluated 

relationships between (1) litter size and use of high-quality foraging habitats (i.e., grassland or mixed 

woodland ecotypes) during pregnancy, and (2) pack size and use of high-quality foraging habitats during 

pregnancy.  

Consistent with our prediction, we observed a strong, negative relationship between pack size and costs of 

thermoregulation incurred during pregnancy (Figure 3.3c), with the largest packs using the most 

thermally favorable habitats. Moreover, we found no relationship between litter size (mixed effects model 

with Poisson error distribution and per-pack random intercepts: βPrey habitat = -0.82, SE = 0.68, P = 0.23; 

Figure C.7a) or pack size (mixed effects model with beta error distribution and per-pack random 

intercepts: βPack size = -0.82, SE = 0.68, P = 0.23; Figure C.7b) and use of high-quality foraging habitats. 

Together, these results suggest that African wild dogs are more sensitive to spatiotemporal variation in 
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costs of thermoregulation than to variation in prey density during pregnancy, with members of more 

dominant packs gleaning the fitness benefits of using less costly habitats.  

Although not as marked as during pregnancy, endogenous heat production also increases during lactation 

(Friebe et al. 2014, Græsli et al. 2022). Accordingly, we evaluated whether relationships between 

reproductive performance and selection of the thermal landscape persisted during the lactation phase of 

the pup rearing cycle when the reproductive female typically resides at one or more fixed den sites and is 

provisioned by her packmates. To assess whether thermoregulatory costs led to declines in pup 

survivorship (ostensibly by constraining milk production) during lactation, we first extracted the mean 

weekly rate of evaporative water loss required for a lactating female to maintain homeothermy while 

resting in the shade at each den site used to rear each litter (N = 25 litters; median number of dens per 

litter = 3; min. = 1, max. = 7; Table C.4) across the 3-month lactation period from Niche Mapper output. 

We first evaluated the relationship between pack size and pup survivorship. We then evaluated the 

relationships between mean energetic costs experienced during lactation and (1) proportional pup 

survivorship to weaning and (2) pack size. To address the potential role of energy supplies in modulating 

pup recruitment, we evaluated (1) packs’ use of prey preferred habitats during the denning and pup 

survivorship, and (2) pack size and use of the areas associated with high prey density during denning.  

Consistent with prior work on wild dog pup recruitment (Courchamp and Macdonald 2001, Creel and 

Creel 2015), we observe a positive relationship between pack size and pup survival (Figure 3.4a). 

Contrary to our results during pregnancy, costs of thermoregulation incurred by lactating females at den 

sites did not predict pup recruitment to weaning (Figure 3.4b) and was unrelated to pack size (Figure 

3.4c). These results suggest that milk production was not constrained by thermoregulatory costs and that 

the thermal landscape was not a primary determinant of den site selection and that factors other than the 

cost side of the energy balance equation, but that still vary with pack size, constrain reproductive success 

after pups are born. We found no relationship between pack size and use of high-quality foraging habitats 

(mixed effects model with beta-error distribution and per-pack random intercepts: βPack size = -0.0003, SE = 

0.04, P = 0.99; Figure C.8a) or between use of those habitats and pup survival (mixed effects model with 

beta-error distribution and per-pack random intercepts: βPrey habitat = -0.52, SE = 3.9, P = 0.89;  Figure 

C.8a).  Nevertheless, larger packs in our study population have better hunting success than smaller packs 

because of increased opportunistic encounters with prey (Hubel et al. 2016a,b) and can thus better 

provision the reproductive female and pups during lactation while avoiding potentially risky habitat. 

Previous work has similarly demonstrated the influence of pack size on pup survivorship through 

provisioning and protection from competitors (Courchamp and Macdonald 2001, Creel and Creel 2015, 

Forssman et al. 2018), and that den site selection is primarily driven by efforts to mitigate exposure to risk  
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Figure 3.4. Pack size predicts pup survivorship through the denning period. (A) Pack size had a positive effect 

on pup survivorship to 3 months: larger packs had significantly (α = 0.10) higher pup survival than smaller packs 

through the lactation phase of the pup rearing cycle (mixed effects model with a beta error distribution and per-pack 

random intercepts: βPack size = 0.15, SE = 0.09, P = 0.08). Unlike the pregnancy phase of the pup rearing cycle, this 
relationship was not explained by packs’ use of the thermal environment. (B) Thermoregulatory costs incurred 

during lactation did not significantly influence the proportion of pups surviving to 3 months of age (mixed effects 

model with a beta error distribution and per-pack random intercepts: βEWL = -9.5, SE = 6.7, P = 0.16). (C) Larger 

packs did not use den sites that were less costly for lactating individuals than smaller packs (mixed effects model 

with a Gaussian error distribution and per-pack random intercepts: βPack size = -0.00004, SE = 0.003, P = 0.99). 

Together, these results suggest that energetic costs are no longer a primary determinant of recruitment rates after 

pups are born. Instead, other mechanisms associated with pack size, such as energy ‘gain’ through the provisioning 

of regurgitated food for pups and the lactating female or better protection from adversaries (e.g., competing packs or 

dominant guild members), likely underpin variation in pup survivorship through the denning period.   

 

of predation from lions (Jackson et al. 2014, Davies et al 2014, Alting et al. 2021). Our mechanistic 

results illustrate context dependent trade-offs among nutrition, thermoregulatory costs, and risk and 

highlight the consequences of use of the thermal environment for pup production, the vital rate the most 

contributes to population growth for this endangered species (Creel et al. 2004).  

Our study is among the first to elucidate the mechanistic underpinnings of thermal constraints on 

reproductive success in a wild population of large mammals and answers recent calls to investigate the 

degree to which mammals can use behavior to buffer themselves against such constraints (Speakman and 

Król 2010a, Fuller et al. 2016, Beever et al. 2016). Consistent with heat dissipation limit theory 

(Speakman and Król 2010b), fecundity of African wild dogs in Botswana was limited by the ability of the 

breeding female to dissipate heat. Experimental work with smaller mammals has produced similar results. 

For example, laboratory mice rearing young at room temperature (21°C) ate less food, produced less 

milk, and weaned smaller offspring than mice exposed to cooler temperatures (8°C) (Johnson and 
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Speakman 2001). Similarly, shaved mice ate more food, produced more milk, and weaned larger 

offspring than unshaved mice at the same temperatures (Krol et al. 2007). Lab mice’s ability to dissipate 

heat during lactation, their most energetically demanding life stage, thus constrained reproductive success 

even when nutritional resources were unlimited. Thermal constraints on production have long been 

documented in livestock, where high ambient temperatures limit mammalian reproductive rates despite 

abundant nutritional resources (Krishnan et al. 2017, Sinha et al. 2017). Our finding that wild dogs’ 

ability to dissipate heat during pregnancy, when the breeding female must meet both the metabolic 

demands of fetal growth and extreme energetic requirements of cursorial hunting (Gorman et al. 1998, 

Hubel et al. 2016a,b), mediates the number of offspring that are born and survive to emerge from the den 

contributes evidence to a growing body of literature that free-ranging mammals are sensitive to and 

limited by energetic costs of thermoregulation (Speakman and Król 2010b, Long et al. 2014,2016, Wells 

et al. 2016, Rogers et al. 2021, Verzuh et al. 2022). 

During pregnancy, variation in the thermal landscape led to an ideal despotic distribution (Fretwell and 

Lucas 1970) of packs, wherein larger, more dominant (Creel and Creel 2002, Jackson et al. 2017) packs 

occupied the least costly areas. Competitive use of the thermal environment has never before, to our 

knowledge, been documented in large mammals despite an abundance of literature predicting the 

vulnerability of the taxa to high ambient temperatures (Khaliq et al. 2014, Fuller et al. 2016, Veldhuis et 

al. 2019) and documenting competition for thermal refugia in ectothermic species [e.g., bearded dragons 

(Khan et al. 2010), salmonids (Hitt et al. 2016), skinks (Michelangeli et al. 2018)]. Ecologists have 

historically focused energetic “supply” (i.e., nutritional resources) as the central driver of intraspecific 

competition (e.g., Huxley 1942, Stearns 1976, McNab 2002), but in many situations animals are not 

externally limited by food resources (Boutin 1990, Speakman and Krol 2010b). Indeed, such is the case 

for wild dogs for which foraging success and population growth do not vary as a function of prey density 

(Creel and Creel 1998, Creel et al. 2004). In this context, we find that energetic “costs” drive the 

distribution of packs across our study area during pregnancy and underpin variation in fecundity within 

the population. Ultimately, high quality environments are those that increase residents’ survival and 

production (VanHorne 1983, Mosser et al. 2009), underscoring the need to incorporate mechanistically 

derived estimates of thermoregulatory costs into evaluations of suitable habitat in future, hotter 

environments.  
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Materials and Methods 

Study system 

Our study area lies in the Moremi Game Reserve and surrounding Wildlife Management Areas at the 

edge of the Okavango Delta (19°31’S, 23°37’E; Figure 3.1a). Annual precipitation (300-600-mm) in this 

region is highly seasonal and occurs in the hot season (October – April), while the annual flood peaks in 

the delta terminus during the cool season (May – September) (McNutt and Silk 2008). Long-term 

monitoring of the African wild dog population in our study area was initiated in 1989 and has run 

continuously to the present day (McNutt 1996). Our dataset includes the period in which each pack had (i) 

at least one individual fitted with a GPS collar recording hourly relocation data, and (ii) ground-based 

monitoring data on pack size and demography (i.e., 2012-2016; Table C4). Den locations and 

abandonment dates were determined from GPS data or by radio tracking collared individuals from a 

vehicle on the ground or from the air (182 Cessna fixed-wing aircraft with a radio tracking antenna). Den 

sites were repeatedly observed from a vehicle to estimate litter size (the maximum number of emergent 

pups that observers counted at the primary den; van der Meer et al. 2013; Davies et al. 2016, Alting et al. 

2022) and pup survivorship to 3 months of age. GPS and radio collars were deployed following 

previously described procedures (Osofsky et al. 1996) and were in accordance with the guidelines 

established by the American Society of Mammologists (Sikes & The Animal Care and Use Committee of 

the American Society of Mammologists 2016). All field work was conducted by the Botswana Predator 

Conservation Trust under research permit EWT/8/36/4XXXVIII issued by the Ministry of Environment, 

Nature and Tourism (MENT).  

Biophysical modeling  

We used the program Niche Mapper to model spatiotemporally explicit costs of thermoregulation of wild 

dogs across our study area in northern Botswana (Porter and Gates 1969, Porter and Mitchell 2006, 

Kearney and Porter 2009, Natori and Porter 2007, Mathewson et al 2020, Rogers et al. 2021, Campbell-

Staton et al. 2021, Verzuh et al. 2022). Based on fundamental principles of heat and mass exchange 

between an organism and its environment, Niche Mapper solves coupled energy balance equations using 

two sub-models that integrate site-specific characteristics of the environment (the ‘microclimate’ sub-

model) and characteristics of the organism (the ‘endotherm’ sub-model). The model produces hourly and 

daily estimates of thermoregulatory costs (water loss and metabolic rate) to maintain homeothermy at a 

given location (Porter and Gates 1969, Porter 2016). The microclimate sub-model uses local climate data 

to calculate hourly or daily estimates of air temperature, wind speed, humidity, and solar radiation during 

the ‘average’ day within a user-supplied time interval (e.g., a day, week, or month depending on the 

desired output resolution). The accuracy of the microclimate sub-model has been validated across an 



65 
 

 

array of ecosystems (Porter et al. 1973, Natori et al. 2007, Kearney et al. 2014). The endotherm sub-

model integrates user-supplied properties of the model organism that influence rates of heat transfer (e.g., 

allometry, metabolic rate, pelt characteristics) with vegetation characteristics and outputs from the 

microclimate model (Long et al. 2014, Fitzpatrick et al. 2015, Mathewson et al. 2015). In addition, the 

endotherm sub-model included both behavioral and physiological mechanisms for heat dissipation (e.g., 

angling the body away from the sun, seeking shade, or panting) (Natori et al. 2007). When Niche Mapper 

is unable to solve the energy balance equation in the climatic conditions specified by the user (i.e., the 

organism is either gaining or losing heat to the environment), the endotherm sub-model progresses 

sequentially through a suite of behavioral and physiological thermoregulatory responses from least costly 

to most costly, thereby producing conservative estimates of thermoregulatory costs that represent a ‘best-

case scenario’ for an organism attempting to achieve heat and mass balance (Long et al. 2014).  

Topographic, vegetative, and weather data from a larger study area can be used to extend the single-site 

Niche Mapper simulations and calculate variation in thermoregulatory costs across landscapes (Natori et 

al. 2007, Rogers et al. 2021). The landscape-level analysis performs microclimate simulations across the 

study area at a user-defined spatiotemporal resolution. The endotherm sub-model then uses the 

microclimate outputs, vegetation characteristics, and supplied organismal data to solve the energy and 

mass balance equation at each location (i.e., pixel) and time across the study area. Assembling model 

outputs across sites during a given time period allows the user to create a spatiotemporally explicit raster 

map of thermoregulatory costs within the study area (Porter et al. 2000, 2002). 

We parameterized Niche Mapper’s microclimate sub-model at the landscape-scale using publicly 

available data (Table C.1). Elevation data were obtained from a digital elevation map at 1-km resolution 

across our study area (Amatulli et al. 2018). Historic maximum and minimum daily temperatures were 

obtained for each year of our study (2012-2016) at 1-km resolution (Zhang et al. 2018). We averaged 

daily temperature at each pixel across our study area to obtain mean week-year maximum and minimum 

ambient temperatures. Percent cloud cover data were obtained from EarthEnv datasets, which use twice-

daily MODIS satellite images integrated over 15 years (2000–2014) to generate monthly average cloud 

cover estimates (Wilson and Jetz 2016). Wind speed data were obtained from WoldClim 2 datasets, 

which interpolate climate data from > 10,000 weather stations integrated over 30 years (1970-2000) to 

generate monthly average wind speed estimates (Fick and Hijmans 2017). A microclimate model 

subroutine estimated relative humidity as a function of daily temperature range and assuming a constant 

mass of water in the air over the 24-hour interval (Geiger 1965, Porter and Mitchell 2006).  

We parameterized Niche Mapper’s endotherm sub-model separately for a non-reproductive female, a 

pregnant, and a lactating wild dog using published data on wild dog and related species’ physiology 
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(Tables C.2-5). We used multipliers of basal metabolic rate (BMR) within the endotherm sub-model to 

account for heat produced by differing levels reproductive activity. For each modeled demographic, we 

parameterized the endotherm sub-model to simulate costs associated with resting in the shade throughout 

the full 24-hour day.  

We used the package NicheMapR, the R implementation of the microclimate sub-model of Niche 

Mapper, in R version 4.2.2 to calculate environmental conditions in every pixel in our study area 

(Kearney and Porter 2016, R Core Team 2022). We wrote an R script to act as a data handler and call the 

endotherm sub-model to perform calculations of thermoregulatory costs for each modeled demographic 

(i.e., nonreproductive, pregnant and lactating) for each pixel in the study area. To help validate our Niche 

Mapper outputs, we conducted a metabolic chamber simulation that allowed us to compare the thermal 

neutral zone of our modeled animals to experimentally derived values (Figure C.1). Additionally, we used 

Latin hypercube sampling to evaluate the sensitivity of Niche Mapper outputs to variation in key 

physiological traits (Figure C2-4). Following previous authors who have conducted similar sensitivity 

analyses of Niche Mapper outputs for other species (e.g., Wang et al. 2018, Rogers et al. 2021, Campbell-

Staton et al. 2021), we ran simulations for 1,000 random combinations of endotherm sub-model 

parameter values within specified ranges (Tables C.3). Both avenues of model validation provided strong 

support for the accuracy of our model predictions. 

Statistical analyses 

To assess the impact of thermoregulatory costs incurred during pregnancy on fecundity, we regressed 

litter size (i.e., maximum number of pups observed emerging from the den) against mean predicted rates 

of evaporative water loss at locations used during pregnancy using a generalized linear model with a 

Poisson error distribution. Ground-monitoring data enabled precise estimates of whelping dates for each 

litter included in our study (N = 25; Table C.4) and facilitated partitioning of GPS data among phases of 

the pup rearing cycle in each pack-year. Hourly movement data during pregnancy and lactation were 

available for 12 and 15 pack-years, respectively (Table C.4). Because African wild dogs are obligately 

social and rarely travel more than 1 km away from their pack mates while on the move (Hubel et al. 

2016b), we assumed that any GPS-collared individual’s use of the thermal landscape during the 

pregnancy phase of the pup rearing cycle represented the movement of the reproductive female within the 

pack. Accordingly, we included movement data from only one collared individual per pack-year to avoid 

pseudoreplication. In the two instances in which more than one individual was collared in the same pack-

year, we used the reproductive female’s GPS-collar data in analyses of space use during the pregnancy 

phase, and the nonreproductive individual’s collar data in analyses of the lactation phase of the pup 

rearing cycle. To test that our results are not sensitive to the choice of which GPS-data we used for each 
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pack-year, we regressed litter size against mean predicted rates of evaporative water loss derived from 

each potential rarefication. Results from this analysis confirm that our results are robust to which collared 

individual in a given pack-year is included in the analysis.   

To assess the impact of thermoregulatory costs incurred during lactation on recruitment of pups to 

weaning, we regressed the proportion of pups surviving to 3 months against mean predicted rates of 

evaporative water loss at den sites (N = 81) used by each reproductive female and her litter (N = 25) using 

a generalized liner mixed effects model with a beta error distribution and per-pack random intercepts. For 

instances in which all (n = 4) or none (n = 4) of the pups survived to 3 months of age, we specified pup 

survival as 0.999999 or 0.000001, respectively, to adhere to model assumptions. 

To assess the influence of high-quality foraging habitats on wild dog reproductive success, we regressed 

use of high-quality foraging habitats against litter size, pup survivorship, and pack size. Recent research 

in our study area identified mixed woodland and dry grassland habitats as the preferred habitat of both impala 

(preferred wild dog prey) and lion (primary intraguild predation) and show that wild dog prefer to hunt in those high 

risk/reward habitats (Alting et al. 2021). We thus quantified use of high-quality foraging habitats as the 

proportion of GPS fixes during pregnancy or lactation that intersect pixels classified as Acacia- or 

Combretum-dominated dry woodlands or dry grassland habitats in a publicly available 30-m resolution 

raster of ecotypes in the Okavango Delta (McCarthy et al. 2007). We additionally verified that use of 

high-quality foraging habitats was not correlated with energetic costs (i.e., evaporative water loss) using a 

generalized linear model with a beta-error distribution and per-pack random intercepts.  

We fit models using the glmmTMB() function in the glmmTMB package and inspected model residuals 

using the simulateResiduals() function in the DHARMa package in R (Brooks et al. 2017, Harting 2022). 

We found no evidence that model assumptions were violated.  
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Appendix A: Supplemental materials for, “Chapter 1: Mechanisms of 

individual variation in large herbivore diets: roles of spatial heterogeneity and 

state-dependent foraging” 

 

Supplemental Text 

We used data from two prior vegetation surveys (‘understory plots’ in the floodplain and forage transects 

in the woodland) and two proxies for vegetation community composition within bushbuck home ranges 

(termite mound density and vegetation structure) to evaluate Tobler’s (1970) first law of geography 

(“everything is related to everything else, but near things are more related than distant things”) within our 

study area. Together, these four avenues of analysis affirm our assumption that geographic distance 

between home range centroids is a suitable proxy for dissimilarity in plant community composition. 

Understory plots in floodplain plant communities 

We used previously published data (Pansu et al. 2019) from recent vegetation surveys to quantify the 

relationship between plant community composition and geographic distance within the treeless interior of 

the floodplain habitat in Gorongosa. Tinley (1977) established 18 1-ha monitoring plots along three 

parallel transects extending outwards from Lake Urema (Fig. S1a). In June-August 2015, Pansu et al. 

(2019) resurveyed these plots by randomly placing 1215 1-m2 quadrats and estimating the areal cover of 

each plant species and amount of bare ground in each quadrat using the Braun-Blanquet (1932) method; 

each species and bare ground estimate was binned according to its percent cover (1 = <5%; 2 = 6-25%; 3 

= 26-50%; 4 = 51-75%; 5 = 76-95%; 6 = 96-100%). Bins were converted into relative-abundance 

estimates for each species using the median value of each bin (2.5, 15, 37.5, 62.5, 85, 98). 

To test our prediction that plots farther away from one another differ more in plant community 

composition than closer plots, we used a Mantel test  to evaluate the relationships between 1) the 

dissimilarity in the relative-abundance of plant species (Bray-Curtis dissimilarity) and average distance 

among quadrats within plots, and 2)  the dissimilarity in the relative-abundance of plant species (Bray-

Curtis distance) and the pairwise geographic distance between plots. We observed a significant, positive 

relationship between plant community dissimilarity and pairwise geographic distance within and among 

plots (Fig. S1b). This relationship demonstrates that differences in plant community composition increase 

with geographic distance in the floodplain habitat.  
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Forage transects quantify woodland plant communities 

Because understory plot data only existed for the floodplain habitat, we also evaluated the relationship 

between plant communities and distance using data from forage transects (N = 100) sampled in May–June 

2019 as part of a separate study, most of which fell within the woodland (Figure A.3a). The survey was 

designed to evaluate the distribution of key forages species (n = 32)—those that accounted for >95% of 

the diet of bushbuck and other spiral horned antelopes (Tragelaphus spp.)—previously quantified via 

DNA metabarcoding in Gorongosa (Pansu et al. 2019). Forage transect locations were randomly 

distributed throughout the main road network in our study area (Figure A.3a) and assigned a random 

orientation (0-360°). Along each 100-m transect, surveyors identified the plant rooted every 2.5-m 

interval (n = 40 points per transect) and recorded: (i) the plant taxon, if it was a forge species, (ii) ‘other’, 

if the taxon was not a forage species, or (iii) ‘bare’, if no plant was rooted at the point.  

We quantified dissimilarity of plant community composition (presence/absence of each forage species 

along each transect) among transects using the Jaccard index. We used a Mantel test (Pansu et al. 2019) to 

evaluate the relationship between dissimilarity of plant community composition (Jaccard distance) along 

transects and the pairwise geographic distance between forage transect origins. We found a significant, 

positive relationship between plant community dissimilarity and geographic distance between forage 

transects (Figure A.3c). These results demonstrate that differences in plant community composition 

increase with geographic distance in the woodland habitat. 

Vegetation structure  

Plant species diversity is correlated with vegetation structure (Simonson et al. 2012, Davies and Asner 

2014, Guo et al. 2017, George-Chacon et al. 2019). We thus used vegetation structure as a proxy for plant 

availability within bushbuck home ranges (95% minimum convex polygon, MCP). Methods for 

quantifying vegetation structure within bushbuck home ranges are outlined in the Main Text. We 

quantified the pairwise difference in vegetation structure between bushbuck home ranges using the Bray-

Curtis index. We then evaluated whether differences in vegetation structure (Bray-Curtis distance) 

increased with pairwise geographic distance between bushbuck home range centroids (the arithmetic 

mean position of GPS fixes from each individual). Consistent with results from more direct measures of 

plant community composition, we found a significant, positive relationship between differences in 

vegetation structure and geographic distance between home range centroids (Figure A.3d). These results 

support our assumption that geographic distance between bushbuck home ranges is a suitable proxy for 

differences in plant community compositions.  
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Termite mound density as a proxy for plant communities 

We used termite mound density as a proxy for plant community composition within bushbuck home 

ranges based on previous work in Gorongosa (Daskin et al. 2022) and elsewhere in southern Africa 

(Tinley 1977, Davies et al. 2015) documenting significant differences between mound-affiliated plant 

communities and plant communities in surrounding matrix habitats. Termite mounds are distributed 

throughout the Rift Valley floor in Gorongosa (Figure A.3b) and are pervasive in the woodland habitat 

(Figure A.1a) (Tinley 1977). Termite mounds are created by fungus farming termites (Macrotermitinae) 

that accumulate large mounds of earth and concentrate nutrients and moisture in the soils around their 

mounds, leading to distinctive plant communities associated with mounds that are more productive than 

plants in the surrounding matrix habitat (Grant and Scholes 2006). Thus, termite mounds are considered 

‘foraging hotspots’ for large herbivores, which take advantage of the relatively high-quality plants 

associated with the nutrient and moisture-rich soils on and around the mound (Levick et al 2010).  

We used digital terrain models derived from LiDAR data collected in 2019 to map the distribution of 

termite mounds across our study area and quantify the density of mounds within bushbuck home ranges. 

Using the hillshade tool in ArcGIS to visually transform the digital terrain model, we manually digitized 

the locations of termite mounds using changes in slope and shape to delineate mounds. Although we did 

not directly assess the accuracy of this approach, a previous study that used automated classification to 

map termite mounds in similar habitat from LiDAR data with coarser resolution (1.12 m) detected 78-

90% of mounds >0.5-m tall (Davies et al. 2014), which are those most likely to be meaningful to 

antelopes. We used a Mantel test (Pansu et al. 2019) to evaluate the relationship between the pairwise 

difference in mound density within bushbuck home ranges (95% MCP) and the pairwise geographic 

distance between home range centroids. We found a significant, positive relationship between pairwise 

difference in mound density within bushbuck home ranges and geographic distance between home ranges 

(Fig. S1e). These results demonstrate that differences in the availability of mound-associated forage 

resources increase with geographic distance. 
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Supplemental Tables 

Table A.1. Summary of principle component analysis of 12 nutritional condition metrics from adult female (n = 112) and male (n = 25) Tragelaphus 

antelopes in Gorongosa National Park, Mozambique 2014–2019. Each column (PC1-12) represents a principle component. >80% of the variance in these 

metrics was explained by the first two principle components (54.2% and 27.3% respectively).  

 

 

Table A.2. Principle component loadings for each of 12 nutritional condition metrics from adult female (n = 112) and male (n = 25) Tragelaphus 

antelopes in Gorongosa National Park, Mozambique 2014–2019. Variables associated with body size loaded most strongly onto PC1, whereas variables 

associated with the amount of body fat loaded most strongly onto PC2.  

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 

Max_fat -0.23 -0.23 0.71 -0.43 0.43 -0.11 -0.08 0.05 -0.06 0.00 0.01 0.01 

B_femoris -0.31 0.18 0.25 0.15 -0.14 0.80 -0.22 0.04 0.26 0.06 0.03 0.03 

L_dorsi -0.35 0.17 -0.06 0.01 -0.02 0.10 -0.04 -0.52 -0.74 0.01 -0.13 0.04 

SS_ligament -0.19 -0.37 0.38 0.41 -0.43 -0.12 0.53 -0.15 0.06 -0.06 0.00 -0.01 

Lumbar_vert -0.24 -0.30 -0.12 0.68 0.45 -0.14 -0.37 0.12 -0.03 0.01 -0.04 -0.02 

Sacrum -0.22 -0.35 -0.42 -0.20 0.39 0.38 0.56 0.10 -0.01 0.00 0.00 -0.01 

Base_tail -0.24 -0.37 -0.14 -0.23 -0.48 -0.02 -0.27 0.52 -0.26 0.19 -0.24 0.02 

Caudal_vert -0.24 -0.38 -0.25 -0.27 -0.17 -0.10 -0.33 -0.53 0.38 -0.18 0.24 0.00 

Chest_girth -0.34 0.24 -0.07 0.01 -0.04 -0.18 0.08 0.28 -0.06 -0.23 0.53 0.60 

Body_length -0.33 0.26 -0.06 -0.05 0.04 -0.18 0.08 0.03 0.30 -0.39 -0.71 0.13 

Hind_foot -0.34 0.24 -0.07 -0.03 0.04 -0.26 0.12 -0.09 0.26 0.81 -0.01 -0.01 

Net_weight -0.34 0.25 -0.04 -0.02 -0.05 -0.13 0.05 0.20 -0.03 -0.25 0.28 -0.78 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 

Standard deviation 
 

2.550 1.808 0.805 0.649 0.580 0.538 0.480 0.357 0.310 0.207 0.175 0.086 

Proportion of variance 

explained 
 

0.542 0.273 0.054 0.035 0.028 0.024 0.019 0.011 0.008 0.004 0.003 0.001 

Cumulative proportion 

of variance  
 

0.542 0.814 0.868 0.903 0.931 0.955 0.975 0.985 0.993 0.997 0.999 1.000 
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Table A.3. Fecal sampling intensity and other key variables for each bushbuck included in the study. ‘Habitat’ 

is a categorical indicator of which habitat type (floodplain or woodland) each bushbuck is affiliated with. ‘Sex’ 

indicates whether individuals are male (‘M’) or female (‘F’). ‘Lactation’ is a categorical indicator of reproductive 

status, where ‘Y’ denotes lactating females, ‘N’ denotes non-lactating females, and ‘N/A’ denotes males. 

ID 
Sampling 

Start 
Sampling End Duration  

Samples 

(n) 
Habitat Sex Lactation 

 
31471_18 18-Jun-18 11-Aug-18 54 days 11 woodland F N  

31472_18 17-Jun-18 10-Aug-18 54 days 13 woodland F Y  

31473_18 30-Jun-18 11-Aug-18 42 days 12 woodland F N  

31483_18 15-Jun-18 3-Aug-18 49 days 6 floodplain M N/A  

31765_18 30-Jun-18 11-Aug-18 42 days 6 floodplain M N/A  

32006_18 27-Jun-18 11-Aug-18 45 days 12 floodplain F N  

32009_18 15-Jun-18 10-Aug-18 56 days 14 woodland F N  

32010_18 26-Jun-18 5-Aug-18 40 days 10 floodplain M N/A  

32012_18 28-Jun-18 11-Aug-18 44 days 13 floodplain M N/A  

31471_19 22-Jun-19 13-Aug-19 52 days 12 floodplain F Y  

31472_19 23-Jun-19 5-Aug-19 43 days 12 floodplain F Y  

31473_19 24-Jun-19 7-Aug-19 44 days 12 woodland F N  

32005_19 18-Jun-19 8-Aug-19 51 days 12 woodland F N  

32007_19 27-Jun-19 10-Aug-19 44 days 11 woodland F Y  

32010_19 26-Jun-19 11-Aug-19 46 days 9 woodland M N/A  
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Table A.4. Pairwise contrasts in diet between each pair of bushbuck in the study population. Contrasts were 

calculated via permutational multivariate analysis of variance (n = 9,999 permutations) and the Holm-Bonferroni 

method to control for familywise error rate (‘Adjusted P’). ‘Pairwise comparison’ identifies the individual diets 

represented in each contrast. ‘Type’ describes the habitat affiliation of each bushbuck in the contrast (‘W’ indicates 

a bushbuck affiliated with woodland habitat; ‘FP’ indicated affiliation with the floodplain). Contrasts that were not 

statistically significant (P > 0.05) after accounting for familywise error rate are noted with ‘n.s.’ 

Pairwise comparison Type DF pseudo-F R2 P Adj. P  

32005_19 vs 31473_19 W v W 1,20 8.66 0.3 0.0001 0.011  

31473_18 vs 31473_19 W v W 1,19 16.98 0.47 0.0002 0.011  

32005_19 vs 32007_19 W v W 1,20 9.88 0.33 0.0001 0.011  

32005_19 vs 32009_18 W v W 1,24 7.17 0.23 0.0001 0.011  

32005_19 vs 32010_19 W v W 1,19 5.97 0.24 0.0002 0.011  

32005_19 vs 31471_18 W v W 1,20 11.87 0.37 0.0001 0.011  

32005_19 vs 31472_18 W v W 1,22 12.22 0.36 0.0001 0.011  

32005_19 vs 31473_18 W v W 1,21 10.81 0.34 0.0001 0.011  

32007_19 vs 32009_18 W v W 1,22 13.6 0.38 0.0001 0.011  

32007_19 vs 32010_19 W v W 1,17 12.8 0.43 0.0001 0.011  

32007_19 vs 31471_18 W v W 1,18 9.44 0.34 0.0001 0.011  

32007_19 vs 31472_18 W v W 1,20 13.06 0.39 0.0001 0.011  

32007_19 vs 31473_18 W v W 1,19 11.44 0.38 0.0001 0.011  

32007_19 vs 31473_19 W v W 1,18 7.72 0.3 0.0001 0.011  

32009_18 vs 32010_19 W v W 1,21 4.96 0.19 0.0004 0.011  

32009_18 vs 31471_18 W v W 1,22 11.64 0.35 0.0001 0.011  

32009_18 vs 31472_18 W v W 1,24 8.71 0.27 0.0001 0.011  

32009_18 vs 31473_18 W v W 1,23 9.01 0.28 0.0001 0.011  

32009_18 vs 31473_19 W v W 1,22 11.91 0.35 0.0001 0.011  

32010_19 vs 31471_18 W v W 1,17 11.16 0.4 0.0002 0.011  

32010_19 vs 31472_18 W v W 1,19 6.5 0.25 0.0011 0.011  

32010_19 vs 31473_18 W v W 1,18 6.15 0.25 0.001 0.011  

32010_19 vs 31473_19 W v W 1,17 12.44 0.42 0.0001 0.011  

31471_18 vs 31472_18 W v W 1,20 4.35 0.18 0.0011 0.011  

31471_18 vs 31473_18 W v W 1,19 6.39 0.25 0.0001 0.011  

31471_18 vs 31473_19 W v W 1,18 13.21 0.42 0.0001 0.011  

31472_18 vs 31473_18 W v W 1,21 2.43 0.1 0.0294 0.097 n.s. 
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31472_18 vs 31473_19 W v W 1,20 18.91 0.49 0.0001 0.011  

32006_18 vs 31765_18 FP v FP 1,16 12.73 0.44 0.0008 0.011  

32006_18 vs 32010_18 FP v FP 1,20 8.99 0.31 0.0002 0.011  

32006_18 vs 32012_18 FP v FP 1,23 8.76 0.28 0.0001 0.011  

32006_18 vs 31471_19 FP v FP 1,22 15.56 0.41 0.0001 0.011  

32006_18 vs 31472_19 FP v FP 1,22 15.48 0.41 0.0001 0.011  

32006_18 vs 31483_18 FP v FP 1,16 5.47 0.25 0.0036 0.022  

32010_18 vs 32012_18 FP v FP 1,21 8.09 0.28 0.0001 0.011  

32010_18 vs 31765_18 FP v FP 1,14 2.26 0.14 0.049 0.098 n.s. 

32010_18 vs 31471_19 FP v FP 1,20 3.43 0.15 0.0038 0.022  

32010_18 vs 31472_19 FP v FP 1,20 4.15 0.17 0.0006 0.011  

32010_18 vs 31483_18 FP v FP 1,14 1.01 0.07 0.3944 0.394 n.s. 

32012_18 vs 31765_18 FP v FP 1,17 16.32 0.49 0.0002 0.011  

32012_18 vs 31471_19 FP v FP 1,23 11.97 0.34 0.0001 0.011  

32012_18 vs 31472_19 FP v FP 1,23 14.71 0.39 0.0001 0.011  

32012_18 vs 31483_18 FP v FP 1,17 7.06 0.29 0.0002 0.011  

31765_18 vs 31471_19 FP v FP 1,16 6.6 0.29 0.0002 0.011  

31765_18 vs 31472_19 FP v FP 1,16 3.97 0.2 0.0015 0.011  

31765_18 vs 31483_18 FP v FP 1,11 2.51 0.2 0.0242 0.097 n.s. 

31471_19 vs 31472_19 FP v FP 1,22 4.26 0.16 0.0001 0.011  

31471_19 vs 31483_18 FP v FP 1,16 4.93 0.24 0.0002 0.011  

31472_19 vs 31483_18 FP v FP 1,16 3.33 0.17 0.0005 0.011  

32005_19 vs 32012_18 W v FP 1,23 27.65 0.55 0.0001 0.011  

32005_19 vs 32006_18 W v FP 1,22 26.63 0.55 0.0001 0.011  

32005_19 vs 32010_18 W v FP 1,20 13.04 0.39 0.0001 0.011  

32005_19 vs 31765_18 W v FP 1,16 11.62 0.42 0.0004 0.011  

32005_19 vs 31471_19 W v FP 1,22 13.98 0.39 0.0001 0.011  

32005_19 vs 31472_19 W v FP 1,22 12.86 0.37 0.0001 0.011  

32005_19 vs 31483_18 W v FP 1,16 11.44 0.42 0.0001 0.011  

32007_19 vs 32010_18 W v FP 1,18 14.69 0.45 0.0001 0.011  

32007_19 vs 32012_18 W v FP 1,21 31.94 0.6 0.0001 0.011  

32007_19 vs 31765_18 W v FP 1,14 14.47 0.51 0.0001 0.011  

32007_19 vs 31471_19 W v FP 1,20 16.86 0.46 0.0001 0.011  
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32007_19 vs 31472_19 W v FP 1,20 15.27 0.43 0.0001 0.011  

32007_19 vs 31483_18 W v FP 1,14 13.63 0.49 0.0001 0.011  

32009_18 vs 32010_18 W v FP 1,22 15.45 0.41 0.0001 0.011  

32009_18 vs 32012_18 W v FP 1,25 35.68 0.59 0.0001 0.011  

32009_18 vs 31765_18 W v FP 1,18 12.55 0.41 0.0001 0.011  

32009_18 vs 31471_19 W v FP 1,24 16.89 0.41 0.0001 0.011  

32009_18 vs 31472_19 W v FP 1,24 15.25 0.39 0.0001 0.011  

32009_18 vs 31483_18 W v FP 1,18 13.38 0.43 0.0001 0.011  

32010_19 vs 32012_18 W v FP 1,20 36.94 0.65 0.0001 0.011  

32010_19 vs 31765_18 W v FP 1,13 17.1 0.57 0.0002 0.011  

32010_19 vs 31471_19 W v FP 1,19 18.28 0.49 0.0001 0.011  

32010_19 vs 31472_19 W v FP 1,19 17.03 0.47 0.0001 0.011  

32010_19 vs 31483_18 W v FP 1,13 15.71 0.55 0.0004 0.011  

31471_18 vs 31471_19 W v FP 1,21 19.56 0.49 0.0001 0.011  

31471_18 vs 31472_19 W v FP 1,20 17.92 0.47 0.0001 0.011  

31471_18 vs 31483_18 W v FP 1,14 16.15 0.54 0.0001 0.011  

31472_18 vs 31472_19 W v FP 1,22 22.18 0.5 0.0001 0.011  

31472_18 vs 31483_18 W v FP 1,16 20.75 0.56 0.0001 0.011  

31473_18 vs 31483_18 W v FP 1,15 15.08 0.5 0.0002 0.011  

31473_19 vs 31483_18 W v FP 1,14 15.43 0.52 0.0002 0.011  

32006_18 vs 32007_19 FP v W 1,20 31.88 0.61 0.0001 0.011  

32006_18 vs 32009_18 FP v W 1,24 32.14 0.57 0.0001 0.011  

32006_18 vs 32010_19 FP v W 1,19 36.84 0.66 0.0001 0.011  

32006_18 vs 31471_18 FP v W 1,20 37.57 0.65 0.0001 0.011  

32006_18 vs 31472_18 FP v W 1,22 46.95 0.68 0.0001 0.011  

32006_18 vs 31473_18 FP v W 1,21 35.58 0.63 0.0001 0.011  

32006_18 vs 31473_19 FP v W 1,20 35.67 0.64 0.0001 0.011  

32010_18 vs 32010_19 FP v W 1,17 15.63 0.48 0.0001 0.011  

32010_18 vs 31471_18 FP v W 1,18 16.61 0.48 0.0001 0.011  

32010_18 vs 31472_18 FP v W 1,20 21.19 0.51 0.0001 0.011  

32010_18 vs 31473_18 FP v W 1,19 15.53 0.45 0.0001 0.011  

32010_18 vs 31473_19 FP v W 1,18 16.09 0.47 0.0002 0.011  

32012_18 vs 31471_18 FP v W 1,21 37.73 0.64 0.0001 0.011  
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32012_18 vs 31472_18 FP v W 1,23 47.8 0.68 0.0001 0.011  

32012_18 vs 31473_18 FP v W 1,22 37.6 0.63 0.0001 0.011  

32012_18 vs 31473_19 FP v W 1,21 36.01 0.63 0.0001 0.011  

31765_18 vs 31471_18 FP v W 1,14 17.44 0.55 0.0002 0.011  

31765_18 vs 31472_18 FP v W 1,16 21.28 0.57 0.0001 0.011  

31765_18 vs 31473_18 FP v W 1,15 15.66 0.51 0.0003 0.011  

31765_18 vs 31473_19 FP v W 1,14 16.54 0.54 0.0004 0.011  

31471_19 vs 31472_18 FP v W 1,22 24.21 0.52 0.0001 0.011  

31471_19 vs 31473_18 FP v W 1,21 15.25 0.42 0.0001 0.011  

31471_19 vs 31473_19 FP v W 1,20 18.46 0.48 0.0001 0.011  

31472_19 vs 31473_18 FP v W 1,21 15.67 0.43 0.0001 0.011  

31472_19 vs 31473_19 FP v W 1,20 16.16 0.45 0.0001 0.011  
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Table A.5. Pairwise contrasts in diet based on occurrence (presence/absence) data each pair of bushbuck in 

the study population. Contrasts were calculated using permutational multivariate analysis of variance (n = 9,999 

permutations) and the Holm-Bonferroni method to control for familywise error rate (‘Adjusted P’). These results 

parallel those presented in Table A.4 using relative read abundance diet data. ‘Pairwise comparison’ identifies the 

individual diets represented in each contrast. ‘Type’ describes the habitat affiliation of each bushbuck in the contrast 
(‘W’ indicates a bushbuck affiliated with woodland habitat; ‘FP’ indicated affiliation with the floodplain). Contrasts 

that were not statistically significant (P > 0.05) after accounting for familywise error rate are noted with ‘n.s.’ 

Pairwise comparison Type DF pseudo-F R2 P Adjusted P  

32005_19 vs 31473_19 W v W 1,20 22.56 0.52 0.0001 0.011  

31473_18 vs 31473_19 W v W 1,19 22.44 0.54 0.0001 0.011  

32005_19 vs 32007_19 W v W 1,20 20.19 0.50 0.0001 0.011  

32005_19 vs 32009_18 W v W 1,24 18.07 0.43 0.0001 0.011  

32005_19 vs 32010_19 W v W 1,19 45.73 0.70 0.0001 0.011  

32005_19 vs 31471_18 W v W 1,20 22.65 0.53 0.0001 0.011  

32005_19 vs 31472_18 W v W 1,22 25.38 0.54 0.0001 0.011  

32005_19 vs 31473_18 W v W 1,21 22.56 0.52 0.0001 0.011  

32007_19 vs 32009_18 W v W 1,22 24.85 0.53 0.0001 0.011  

32007_19 vs 32010_19 W v W 1,17 9.73 0.36 0.0001 0.011  

32007_19 vs 31471_18 W v W 1,18 13.48 0.43 0.0001 0.011  

32007_19 vs 31472_18 W v W 1,20 19.41 0.49 0.0001 0.011  

32007_19 vs 31473_18 W v W 1,19 18.32 0.49 0.0001 0.011  

32007_19 vs 31473_19 W v W 1,18 10.97 0.38 0.0002 0.011  

32009_18 vs 32010_19 W v W 1,21 7.90 0.27 0.0001 0.011  

32009_18 vs 31471_18 W v W 1,22 19.95 0.48 0.0001 0.011  

32009_18 vs 31472_18 W v W 1,24 11.32 0.32 0.0001 0.011  

32009_18 vs 31473_18 W v W 1,23 10.16 0.31 0.0001 0.011  

32009_18 vs 31473_19 W v W 1,22 25.56 0.54 0.0001 0.011  

32010_19 vs 31471_18 W v W 1,17 8.08 0.32 0.0001 0.011  

32010_19 vs 31472_18 W v W 1,19 6.67 0.26 0.0001 0.011  

32010_19 vs 31473_18 W v W 1,18 8.60 0.32 0.0001 0.011  

32010_19 vs 31473_19 W v W 1,17 11.35 0.40 0.0001 0.011  

31471_18 vs 31472_18 W v W 1,20 5.89 0.23 0.0002 0.011  

31471_18 vs 31473_18 W v W 1,19 5.45 0.22 0.0003 0.011  
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31471_18 vs 31473_19 W v W 1,18 16.21 0.47 0.0002 0.011  

31472_18 vs 31473_18 W v W 1,21 2.86 0.12 0.0187 0.056 n.s. 

31472_18 vs 31473_19 W v W 1,20 26.10 0.57 0.0001 0.011  

32006_18 vs 31765_18 FP v FP 1,16 7.40 0.32 0.0011 0.011  

32006_18 vs 32010_18 FP v FP 1,20 4.09 0.17 0.0033 0.013  

32006_18 vs 32012_18 FP v FP 1,23 14.03 0.38 0.0001 0.011  

32006_18 vs 31471_19 FP v FP 1,22 8.42 0.28 0.0001 0.011  

32006_18 vs 31472_19 FP v FP 1,22 14.45 0.40 0.0001 0.011  

32006_18 vs 31483_18 FP v FP 1,16 2.24 0.12 0.0577 0.115 n.s. 

32010_18 vs 32012_18 FP v FP 1,21 7.64 0.27 0.0001 0.011  

32010_18 vs 31765_18 FP v FP 1,14 6.22 0.31 0.0004 0.011  

32010_18 vs 31471_19 FP v FP 1,20 6.62 0.25 0.0001 0.011  

32010_18 vs 31472_19 FP v FP 1,20 9.98 0.33 0.0001 0.011  

32010_18 vs 31483_18 FP v FP 1,14 1.57 0.10 0.1587 0.159 n.s. 

32012_18 vs 31765_18 FP v FP 1,17 14.07 0.45 0.0003 0.011  

32012_18 vs 31471_19 FP v FP 1,23 8.43 0.27 0.0001 0.011  

32012_18 vs 31472_19 FP v FP 1,23 18.00 0.44 0.0001 0.011  

32012_18 vs 31483_18 FP v FP 1,17 10.47 0.38 0.0002 0.011  

31765_18 vs 31471_19 FP v FP 1,16 7.58 0.32 0.0001 0.011  

31765_18 vs 31472_19 FP v FP 1,16 8.27 0.34 0.0002 0.011  

31765_18 vs 31483_18 FP v FP 1,11 4.38 0.30 0.0024 0.012  

31471_19 vs 31472_19 FP v FP 1,22 4.22 0.16 0.0005 0.011  

31471_19 vs 31483_18 FP v FP 1,16 33.33 0.61 0.0001 0.011  

31472_19 vs 31483_18 FP v FP 1,16 7.47 0.32 0.0004 0.011  

32005_19 vs 32012_18 W v FP 1,23 57.10 0.71 0.0001 0.011  

32005_19 vs 32006_18 W v FP 1,22 48.29 0.69 0.0001 0.011  

32005_19 vs 32010_18 W v FP 1,20 45.73 0.70 0.0001 0.011  

32005_19 vs 31765_18 W v FP 1,16 26.28 0.62 0.0002 0.011  

32005_19 vs 31471_19 W v FP 1,22 21.53 0.49 0.0001 0.011  

32005_19 vs 31472_19 W v FP 1,22 27.46 0.56 0.0001 0.011  

32005_19 vs 31483_18 W v FP 1,16 31.99 0.67 0.0002 0.011  



88 
 

 

 

32007_19 vs 32010_18 W v FP 1,18 64.52 0.78 0.0001 0.011  

32007_19 vs 32012_18 W v FP 1,21 68.56 0.77 0.0001 0.011  

32007_19 vs 31765_18 W v FP 1,14 42.96 0.75 0.0004 0.011  

32007_19 vs 31471_19 W v FP 1,20 30.91 0.61 0.0001 0.011  

32007_19 vs 31472_19 W v FP 1,20 40.75 0.67 0.0001 0.011  

32007_19 vs 31483_18 W v FP 1,14 46.50 0.77 0.0005 0.011  

32009_18 vs 32010_18 W v FP 1,22 56.12 0.72 0.0001 0.011  

32009_18 vs 32012_18 W v FP 1,25 71.78 0.74 0.0001 0.011  

32009_18 vs 31765_18 W v FP 1,18 28.19 0.61 0.0001 0.011  

32009_18 vs 31471_19 W v FP 1,24 25.52 0.52 0.0001 0.011  

32009_18 vs 31472_19 W v FP 1,24 32.81 0.58 0.0001 0.011  

32009_18 vs 31483_18 W v FP 1,18 38.08 0.68 0.0001 0.011  

32010_19 vs 32012_18 W v FP 1,20 44.65 0.69 0.0001 0.011  

32010_19 vs 31765_18 W v FP 1,13 25.76 0.66 0.0004 0.011  

32010_19 vs 31471_19 W v FP 1,19 20.62 0.52 0.0001 0.011  

32010_19 vs 31472_19 W v FP 1,19 27.16 0.59 0.0001 0.011  

32010_19 vs 31483_18 W v FP 1,13 26.07 0.67 0.0004 0.011  

31471_18 vs 31471_19 W v FP 1,21 31.28 0.61 0.0001 0.011  

31471_18 vs 31472_19 W v FP 1,20 44.20 0.69 0.0001 0.011  

31471_18 vs 31483_18 W v FP 1,14 48.09 0.77 0.0005 0.011  

31472_18 vs 31472_19 W v FP 1,22 46.49 0.68 0.0001 0.011  

31472_18 vs 31483_18 W v FP 1,16 56.18 0.78 0.0004 0.011  

31473_18 vs 31483_18 W v FP 1,15 39.75 0.73 0.0002 0.011  

31473_19 vs 31483_18 W v FP 1,14 42.95 0.75 0.0002 0.011  

32006_18 vs 32007_19 FP v W 1,20 63.14 0.76 0.0001 0.011  

32006_18 vs 32009_18 FP v W 1,24 52.47 0.69 0.0001 0.011  

32006_18 vs 32010_19 FP v W 1,19 40.44 0.68 0.0001 0.011  

32006_18 vs 31471_18 FP v W 1,20 62.18 0.76 0.0001 0.011  

32006_18 vs 31472_18 FP v W 1,22 71.07 0.76 0.0001 0.011  

32006_18 vs 31473_18 FP v W 1,21 53.59 0.72 0.0001 0.011  

32006_18 vs 31473_19 FP v W 1,20 58.25 0.74 0.0001 0.011  
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32010_18 vs 32010_19 FP v W 1,17 39.37 0.70 0.0001 0.011  

32010_18 vs 31471_18 FP v W 1,18 64.72 0.78 0.0001 0.011  

32010_18 vs 31472_18 FP v W 1,20 76.95 0.79 0.0001 0.011  

32010_18 vs 31473_18 FP v W 1,19 54.77 0.74 0.0001 0.011  

32010_18 vs 31473_19 FP v W 1,18 59.53 0.77 0.0001 0.011  

32012_18 vs 31471_18 FP v W 1,21 71.01 0.77 0.0001 0.011  

32012_18 vs 31472_18 FP v W 1,23 85.25 0.79 0.0001 0.011  

32012_18 vs 31473_18 FP v W 1,22 66.21 0.75 0.0001 0.011  

32012_18 vs 31473_19 FP v W 1,21 65.16 0.76 0.0001 0.011  

31765_18 vs 31471_18 FP v W 1,14 45.90 0.77 0.0002 0.011  

31765_18 vs 31472_18 FP v W 1,16 47.13 0.75 0.0001 0.011  

31765_18 vs 31473_18 FP v W 1,15 34.26 0.70 0.0001 0.011  

31765_18 vs 31473_19 FP v W 1,14 39.49 0.74 0.0001 0.011  

31471_19 vs 31472_18 FP v W 1,22 33.86 0.61 0.0001 0.011  

31471_19 vs 31473_18 FP v W 1,21 24.37 0.54 0.0001 0.011  

31471_19 vs 31473_19 FP v W 1,20 29.01 0.59 0.0001 0.011  

31472_19 vs 31473_18 FP v W 1,21 33.33 0.61 0.0001 0.011  

31472_19 vs 31473_19 FP v W 1,20 37.71 0.65 0.0001 0.011  
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Supplemental Figures  

 

Figure A.1. Representative aerial photographs of woodland (A,C,E) and floodplain (B,D,F) habitats in 

Gorongosa. Woodland habitats include a mix of Acacia, Combretum, and palm savanna, are commonly dominated 

by termitaria thickets (A, clusters of trees and shrubs that grow on termite mounds), and span a range of canopy 

covers from relatively open forest and salt pans (C) to denser, closed-canopy forest (E). The floodplain grassland 

habitat is a productive (B), seasonally flooded (D) landscape dominated by grasses, forbs, and subshrubs (F) 

bordered by sparsely wooded savanna (visible in B, D). 
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Figure A.2. Principle component analysis of 12 nutritional condition metrics collected from adult female (n = 

112) and male (n = 25) Tragelaphus antelopes (bushbuck, nyala, and kudu) in Gorongosa National Park, 

Mozambique 2014–2019. Nutritional condition metrics were collected at the time of capture and included: (A) 

maximum rump fat depth, (B) thickness of the biceps femoris muscle, (C) thickness of the longissimus dorsi muscle, 

(D) palpation score at the sacrosciatic ligament, (E) palpation score at the lumbar vertebrae, (F) palpation score at 

the sacrum, (G) palpation score at the base of tail, (H) palpation score at the caudal vertebrae, (I) chest girth, (J) 

body length, (K) hind foot length, and (L) body weight. Together, Principle Component 1 (PC1) and Principle 

Component 2 (PC2) explained > 80% of the variance in these data. Black arrows show the projections of the original 

variables, and each grey number represents an individual antelope. Nutritional condition metrics associated with 
body size (e.g., muscle thicknesses, body weight) loaded most strongly onto PC1 and those associated with body fat 

(e.g., palpation scores, max fat) loaded most strongly onto PC2. In ungulates, body fat represents energy stores 

available for maintenance and reproduction and is commonly used as a measure of individuals’ overall nutritional 

condition. Thus, we used the inverse of PC2 as an intuitive index of nutritional condition of bushbuck so that larger 

scores reflect individuals in better nutritional condition. 
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Figure A.3. Plant community dissimilarity increases with geographic distance in Gorongosa National Park, 

Mozambique. (A) Map of study area illustrating the locations of previous vegetation surveys (Tinley plots, stars; 

transects, circles), termite mounds (tan dots), and bushbuck home-range locations relative to floodplain (light grey) 

and woodland (white) habitats surrounding Lake Urema (dark grey). Bushbuck home ranges (95% minimum convex 

polygons) affiliated with the floodplain are noted in shades of red and those associated with the woodland are noted 

in shades of blue. P-values in each panel are from Mantel’s permutation tests for similarity between two matrices. 
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Figure A.4. Relationship between nutritional condition and intensity of use index calculated using all 

available hourly GPS data collected during bushbuck sampling periods (June – August) in Gorongosa 

National Park, Mozambique. Blue points represent woodland-associated bushbuck; red points represent 

floodplain-associated bushbuck. Consistent with our findings from data rarified to the first 21 days after capture (the 

period for which hourly data were available for all sampled individuals), we found a strong, positive relationship 

between nutritional condition and intensity of home-range use for the population as a whole (A) and for bushbuck 

associated with the floodplain habitat (C), and a marginally significant relationship for woodland-associated 

bushbuck (B). Although results are consistent between the two methods of calculating the index, intensity of use is 

sensitive to sample size (Almeida et al. 2019), and thus we present only results using the rarified dataset in the Main 

Text (Fig. 4d,e,f).  
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Figure A.5. Bipartite plant-herbivore interaction network for individual bushbuck. Results for all 

bushbuck in the study are shown in A and results partitioned by habitat association are shown in B (woodland) 

and C (floodplain). Lines connect individuals (top) to dietary plant mOTUs (bottom, colored by plant 
taxonomic family). Width of lines represents the relative read abundance of the plant mOTU in the individual’s 

diet, while the width of the bottom rectangles represents the relative abundance of each plant mOTU in the 

database. Only mOTUs that represent >1% of each individual’s diet are displayed.  
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Figure A.6. Individual diet histograms for bushbuck in Gorongosa illustrating variation in diet 

composition among individuals. Each panel represents an individual, labeled to the right of graph; red bars, 

floodplain bushbuck; blue bars, woodland bushbuck. Y-axes show the relative read abundance of each plant 

taxon in each individual’s diet. All mOTUs that represent > 1% of at least one individual’s diet and could be 

mapped to plant taxa with known nutritional quality are displayed.  
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Figure A.7. Bipartite plant-herbivore interaction network for individual bushbuck calculated from 

presence/absence data. This occurrence-based analysis of all diet plant taxa accounting for > 1% of reads in 

fecal DNA metabarcoding analysis parallels the relative read abundance-based results presented in Figure A.5. 

Results for all bushbuck in the population are shown in A and results partitioned by habitat association are 

shown in B (woodland) and C (floodplain). Lines connect individuals (top) to dietary plant mOTUs (bottom, 

colored by plant family). Width of the top rectangles represent the relative breadth of individual diets; width of 

the bottom rectangles represent the relative abundance of each plant mOTU in the database.  
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Figure A.8. Non-metric multidimensional scaling (NMDS) ordinations showing relative dissimilarity 

(Jaccard index) in the taxonomic composition (presence/absence) of individual fecal samples (points; n = 

160) and dry-season diets (polygons; n = 15) of bushbuck in Gorongosa National Park, Mozambique. This 

occurrence-based analysis of all diet plant taxa accounting for > 1% of reads in fecal DNA metabarcoding 

analysis parallels the analysis of relative read abundance presented in Figure 2. Results for the full population 

are shown in A, and results partitioned by habitat association are shown in B (woodland, blue) and C 

(floodplain, red). Points in closer proximity to one another indicate more similar diets; polygons are convex 

hulls around all samples from each individual. Two individuals captured in woodland moved into floodplain 

shortly after collaring (outlying red points in A are those collected at capture); we excluded these initial 

woodland samples from the analysis of floodplain diet (C). We observed significant differences in individual 

diets, both across all individuals (perMANOVA: pseudo-F14,144 = 28.74, , P ≤ 0.001, R2 = 0.74) and within 

habitat types (woodland: pseudo-F7,80= 15.15, P ≤ 0.001, R2 = 0.57; floodplain: psudeo-F6,62 = 11.27, P ≤ 0.001, 

R2= 0.52). 
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Figure A.9. Relationship between bushbuck diet composition (presence/absence) and spatial variation in 

the distribution of resources in Gorongosa. This occurrence-based analysis of all diet plant taxa accounting 
for > 1% of reads in fecal DNA metabarcoding analysis parallels the analysis of relative read abundance 

presented in Figure 3. We evaluated the relationship between pairwise diet dissimilarity (Jaccard index) and 

distance between home-range centroids (km) for all pairs of GPS-collared bushbuck (A), woodland-associated 

bushbuck (B), and floodplain-associated bushbuck (C). Additionally, we evaluated the relationship between 

pairwise diet dissimilarity and dissimilarity in home-range vegetation structure (Bray-Curtis index) between all 

pairs of GPS-collared bushbuck (D), woodland-associated bushbuck (E), and floodplain-associated bushbuck 

(F). Blue points illustrate pairwise comparison between two woodland-affiliated individuals, red points between 

two floodplain-affiliated individuals, purple points between a woodland and a floodplain affiliated individual. 

We quantified vegetation structure by calculating the proportion of LiDAR points classified as ground-level, 

low, medium, and high vegetation and using the Bray-Curtis index to quantify pairwise compositional 

dissimilarity between home ranges based on those proportions. P-values in each panel are from Mantel’s 

permutation tests for similarity between two matrices.  
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Figure A.10. Relationships between a multivariate index of nutritional condition (see Methods) and 

bushbuck diet quality quantified with occurrence (presence/absence) data in Gorongosa. We estimated the 

quality of individual bushbuck diets by calculating weighted average of DP in the standardized diet of each 

bushbuck assuming equal contribution of each present mOTU to the bushbuck diet as the weighting factor. This 

occurrence-based analysis of all diet plant taxa accounting for > 1% of reads in fecal DNA metabarcoding 

analysis parallels the analysis of relative read abundance presented in Figure 4d,e,f. Blue points represent 

bushbuck with home ranges affiliated with woodland habitat; red points represent bushbuck with home ranges 

affiliated with floodplain habitat. R2 and P-values are from ordinary least-squares linear regression models.  

 

 

 

  

Figure A.11. Relationship between bushbuck nutritional condition (multivariate index of condition; see 

Methods) and diet diversity (Shannon Weaver index) in Gorongosa National Park, Mozambique. Blue 

points represent woodland-associated bushbuck; red points represent floodplain-associated bushbuck. Bushbuck 

in good nutritional condition had less diverse diets than their counterparts in poorer condition (A; mean ± SD 

unique mOTUs across 1,000 iterations of randomly drawing 6 samples for each individual, see Methods). This 

relationship persisted for bushbuck associated with woodland habitat (B) but not for bushbuck associated with 

floodplain habitat (C). R2 and P-values are reported from ordinary least-squares linear regression models.  
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Figure A.12. Relationship between bushbuck diet richness and home range area (km2) in Gorongosa 

National Park, Mozambique. Blue points represent woodland-associated bushbuck; red points represent 
floodplain-associated bushbuck. We used 95% minimum convex polygons (MCP) derived from hourly GPS-

location data to estimate individual bushbuck home ranges during our sampling period in each year. We 

observed no relationship between diet richness (mean ± SD mOTUs among 1,000 iterations of randomly 

drawing 6 samples for each individual) and home-range size across (A) or within (B,C) habitat types. R2 and P-

values are reported from ordinary least-squares linear regression models.  
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Figure A.13. Mean species accumulation curves (lines) ± 1 SD (shading) for individual bushbuck diets in 

Gorongosa. We evaluated the relationship between sampling intensity and the number of plant taxa present in 
bushbuck diets for (A) the full sample population (n = 15), (B) woodland-associated individuals (n = 8, blue), 

and (C) floodplain-associated individuals (n = 7, red). We find that a standardized sample size of 6 is not 

universally sufficient for individual dietary richness to approach an asymptote, despite being sixfold greater 

than the sampling depth in several recent analyses of individual specialization in ungulates (Bison et al. 2015, 

Pansu et al. 2019, Jesmer et al. 2020). However, relationships of relative diet richness among individuals appear 

largely conserved across sampling intensities (i.e., only 2/15 lines cross the curves of other individuals as 

richness as sample size increases).
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Appendix B: Supplemental materials for, “Chapter 2: Trait-based sensitivity 

of large mammals to a catastrophic tropical cyclone” 

 

Materials and Methods 

Study system 

Gorongosa National Park is located at the southern end of the Great Rift Valley (-18.96°, 34.36°) 

approximately 100 km from the Mozambique Channel (Figure 2.1a). The Rift Valley runs through the 

center of the park and encompasses Lake Urema, a large (dry season extent  18 km2), shallow (dry 

season depth  1.5 m) body of water fed by multiple rivers within the 9300 km2 Urema catchment 

(Böhme et al. 2006). Most annual rainfall (mean  850 mm, IQR 650–1080 mm between 1957 and 2018) 

occurs during a single wet season from November–April; in that period, Lake Urema expands and floods 

a large portion of the Rift Valley floor (up to 780 km2) (Tinley 1977, Guyton et al. 2020). When 

floodwaters recede as the dry season progresses (May–October), water becomes increasingly scarce and 

Lake Urema persists as a critical perennial water source. Our study area encompassed the region south 

and west of Lake Urema, an area that is largely accessible by dirt roads and supports dense concentrations 

of wildlife. Within this area, vegetation structure and hydrology distinguish three habitat types: (1) 

floodplain-grassland ( 8–20 m above sea level), a seasonally flooded, highly productive lawn of grasses 

and forbs that supports a large portion of Gorongosa’s ungulate biomass, (2) floodplain-savanna transition 

( 20–25 m above sea level), characterized by intermittent, short-duration flooding and stands of water-

tolerant trees (e.g., fever trees, Vachellia xanthophoea; white acacia, Faidherbia albida; and palms, 

Hyphaene spp.), and (3) savanna woodland (> 25 m above sea level), an infrequently flooded region with 

a diverse community of tree species and a full continuum of canopy cover (Figure B.2; Atkins et al. 2019, 

Becker et al. 2021, Guyton et al. 2020, Tinley 1977, Stalmans & Beilfuss 2008). 

Gorongosa historically supported vast herds of large-bodied grazers (hippopotamus, Hippopotamus 

amphibius; Cape buffalo, Syncerus caffer; blue wildebeest, Connochaetes taurinus; and zebra, Equus 

quagga; size range 198–1,466 kg) along with substantial populations of large carnivores (lion, Panthera 

leo; leopard, P. pardus; African wild dog, Lycaon pictus) (Tinley 1977). During and after the 

Mozambican Civil War (1977–1992), much of which occurred in Gorongosa, all large-mammal 

populations declined by >90% (Stalmans et al. 2019) and leopard and wild dog were extirpated. By 2018, 

restoration efforts had helped to recover total large-herbivore biomass to 95% of pre-war estimates, 

including all of the ungulate species present in 1972; lion abundance rebounded to at least 50% of the 

estimated historical population size by 2016 and has continued to increase, although the exact population 
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size in 2019 is unknown (Guyton et al. 2020, Pringle 2017, Stalmans et al. 2019, Bouley et al. 2018). A 

founding pack of African wild dogs was reintroduced to the park in 2018 (Bouley et al. 2021); leopard 

and hyena were not reintroduced until 2020 and 2022, respectively, after our study was complete. 

Gorongosa’s megafauna was thus largely intact in terms of species composition at the time of our study, 

but community structure was shifted relative to the pre-war baseline in favor of mesoherbivores (size 

range 17–204 kg): waterbuck (Kobus ellipsiprymnus), southern reedbuck (Redunca arundinum), warthog 

(Phacochoerus africanus), impala (Aepyceros melampus), and oribi (Ourebia ourebi) collectively 

accounted for 67% of biomass density in 2018, whereas the formerly dominant large-bodied grazers 

remained comparatively rare (Stalmans et al. 2019). 

Tropical cyclones are relatively common in Mozambique: between 1980 and 2007, an average of 1.18 

cyclones per year made landfall on the Mozambican coast (Cabral et al. 2017). However, Idai (a category 

4 intense tropical cyclone), which made landfall over the port city of Beira on 15 March 2019, was by 

some measures the most severe cyclone on record in the Southern hemisphere (Warren 2019, Cabral 

2017). Idai caused widespread infrastructural damage throughout Mozambique, Zimbabwe, and Malawi, 

incurring more than US $32 billion in damages, and resulting in >1,600 injuries and >600 deaths (Charrua 

et al. 2021). When Cyclone Idai passed over Gorongosa, >200 mm of rain fell (nearly a quarter of the 

long-term annual mean), and maximum sustained wind speeds exceeded 93 km hr-1 (remotely sensed 

data: Global Disaster Alert and Coordinate System 2019).  

We integrated data from multiple, concurrent research projects in Gorongosa to capture individual and 

population-level responses of the two extant large carnivores (lion and wild dog) and the 13 most 

abundant (n > 500 in 2018) and widespread large-herbivore species (Stalmans et al. 2019) to Cyclone 

Idai: savanna elephant (Loxodonta africana), buffalo, sable antelope (Hippotragus niger), wildebeest, 

waterbuck, greater kudu (Tragelaphus strepsiceros), hartebeest (Alcelaphus buselaphus), nyala 

(Tragelaphus angasii), warthog, reedbuck, impala, bushbuck (Tragelaphus sylvaticus), and oribi. These 

species span two orders of magnitude in body mass and encompass a wide range of habitat associations, 

including a range of 12–82% distributional overlap with floodplain habitat (see Aerial wildlife surveys) 

(Figure B.1; Kingdon 1977). Densities of all species consistently increased between 2000 and 2018 

(Stalmans et al. 2019). Six large-herbivore species were not included in this study because they were 

insufficiently abundant and/or restricted to a narrow range of inaccessible habitats; species with n < 200 

counted in 2018 included eland (Tragelaphus oryx), zebra, bushpig (Potamochoerus larvatus), common 

duiker (Sylvicapra grimmia), and red duiker (Cephalophus natalensis), while hippopotamus numbered > 

500 in 2018 but were largely confined to interior wetland in and around Lake Urema. Data were not 
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available for all study species in every analysis. Movement data were available for African wild dog, lion, 

elephant, sable, kudu, nyala, and bushbuck that were equipped with GPS collars when Idai made landfall; 

camera traps produced sufficient sample sizes only for waterbuck, warthog, nyala, impala, and bushbuck; 

and nutritional condition data were only available for bushbuck, nyala, and kudu. Diet and abundance 

data were available for all study species.  

 

Quantifying flood depth and extent 

We tracked flood depths throughout the main road network in Gorongosa before and after Cyclone Idai 

using loggers deployed in 2018. Between 18 August and 16 November 2018, we installed 46 automated 

water-level loggers (HOBO U20L-01; Onset Corp., Bourne, MA, USA) around the southern floodplain of 

Lake Urema and in adjoining savanna (Figure B.3b). These loggers were deployed in a regular grid with 

1.8-km spacing between locations, covering a 120-km2 minimum convex polygon. An additional logger 

was deployed indoors in the park’s research headquarters to record atmospheric pressure, which we later 

used to correct raw pressure readings from the other sensors (i.e., to obtain pressure of water, independent 

of air pressure). The area of study for the flood-sensor network broadly aligned with that of most 

ecological research conducted in Gorongosa since 2012.  

All sensors were set to record water levels every 4 h and were deployed inside slotted PVC pipes set 

vertically into the ground and capped with PVC to reduce disturbance by wildlife; pipes were lashed with 

stainless steel zip ties to rebar stakes driven 60–100 cm into the ground. We measured the depth from 

ground level to the bottom of each hole in which a sensor was deployed for later corrections of measured 

water depths above ground. 

Between June and September 2019, as floodwaters receded and deployment sites became accessible, we 

retrieved logger data. Of the 46 loggers deployed, one was crushed by a fallen tree, one was damaged by 

animals, and seven were missing from their housings. Data were transferred from the remaining 37 

sensors to a hard drive using the HOBO Waterproof Data Shuttle (#U-DTW-1) and HOBOWare software 

(Onset Corp.; Bourne, MA, USA). Upon inspection, we found corrupted data in the records of three 

sensors (one for the full length of deployment, one from 1 April 2019 onwards, and one from 1 January 

2019 onwards). We removed these data from our analyses. We truncated sensor data from 16 November 

2018 at 04:00 to 21 June 2019 at 08:00. For each sensor, we subtracted atmospheric pressure from the raw 

recorded pressure to yield water pressure. This enabled us to calculate water depths at each location using 

HOBOWare and its Barometric Compensation Assistant tool. We further corrected each water depth by 
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subtracting the appropriate hole depth from each sensor’s data, which yielded estimated water depths 

above ground level (i.e., excluding any water that filled the holes in which sensors were placed).  

We used an inverse distance weighting function to interpolate water depths (30-m resolution) from the 

corrected measurements at each logger location across the minimum convex polygon encompassing the 

locations of all 46 original loggers, plus a 1-km buffer. We interpolated water depths in program R using 

the function ‘idw’ in package gstat (Pebesma 2004, R Core Team 2020). In the absence of extensive 

validation data (e.g., manually measured depth records), we considered it best to use a relatively simple 

interpolation method as opposed to, for example, kriging. We used a high power (p = 7) to strongly 

weight interpolated water levels toward values at the nearest measured water depth, because all else 

equal, closer locations should have more similar water depths. When we tested the interpolation using 

lower powers (i.e., p = 3 and p = 5), the additional influence of distant sensors led to unrealistic spotting 

patterns.  

Because the flood-sensor network did not fully overlap with the extent of GPS-collar data (see: 

Movement analyses), we used publicly available geospatial data on flooding in Mozambique after 

Cyclone Idai from the UN Operational Satellite Applications Programme (UNOSAT) to assess 

herbivores’ behavioral adjustments to the flood edge (Figure B.21). The dataset included satellite-detected 

surface waters (10-m resolution) in the central provinces of Mozambique, as observed from Sentinel-1 

imagery acquired from 13–26 March 2019 (UNOSAT 2019). 

 

NDVI analysis 

To evaluate how the increased extent and duration of flooding after Cyclone Idai impacted vegetation 

productivity, and hence the availability of green forage for herbivores, we compared the mean monthly 

normalized difference vegetation index (NDVI) curves from 2019 with those from 20 bracketing years 

(2000-2018, 2020). NDVI is a measure of greenness, with low values (close to 0) indicating low 

aboveground primary productivity and high values (close to 1) indicating high productivity (Western et 

al. 2015). We analyzed how NDVI in 2019 differed from normal years within (i) the remotely sensed area 

of Idai-induced flooding within the Gorongosa Rift Valley, (ii) the area within our flood-sensor array that 

was newly flooded (>1.0 m) after Idai, and (iii) a 748-km2 polygon defined by the movements of GPS-

collared antelopes in 2014–2019 (Daskin et al. 2022) that encompassed the floodplain margin and 

adjacent higher-elevation savanna-woodland habitats. We used the map of flooding generated on 26 

March 2019 from UN satellite data (UNOSAT 2019) to delineate the flooded area. The original spatial 

product contained 647 individual spatial polygons that we merged into a single bounding polygon [i.e., 
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alpha-shape based on α = 1600, to prevent holes in the polygon, implemented with R package alphahull 

(Pateiro-Lopez & Rodriquez-Casal 2016)].  

We calculated NDVI from MODIS data downloaded using the MODIStsp package (50) in R and 

extracted monthly 1-km vegetation index products (MOD13A and MYD13A3) with NDVI, quality, 

usefulness, and land/water bands from February 2000 to December 2020 (MYD13A3 products are 

available only from July 2002 onwards). We restricted spatial extent to the three focal areas described 

above. We retained only pixels with quality labels 0 or 1 (indicating unobscured pixels), usefulness labels 

<3 (highest quality estimates), and land labels of 1 (indicating pixel values did not represent water); other 

pixels were assigned ‘NA’. To generate one estimate of NDVI per pixel per month, we averaged the 

pixel-level NDVI values between the two products (MOD13A and MYD13A3). For each focal area, we 

then calculated the mean monthly NDVI value across the extracted pixels. We compared NDVI in each 

month of 2019 to the inter-annual mean and standard deviation (SD) from 2000–2018 and 2020 (Fig. 3a, 

fig. S11) by computing the NDVI anomaly (Z-score) for each month, where Z > 2 or < -2 indicates that 

NDVI in 2019 was more than two standard deviations from the long-term monthly mean (51). 

 

Animal movement analysis 

To evaluate fine-scale responses of mammals to Cyclone Idai, we used movement data from GPS-

collared bushbuck (2019: n = 8; 2020: n = 8; 2015: n = 4), nyala (2019: n = 4; 2020: n = 5; 2015: n = 9), 

kudu (2019: n = 12; 2020: n = 10; 2015: n =8), sable (2019: n = 3), elephant (2019: n = 13), wild dog 

(2019: n = 1 pack), and lion (2019: n = 8) collected as part of ongoing, long-term studies in Gorongosa 

(Arumoogum 2022, Branco et al. 2019, Bouley et al. 2019, 2021, Daskin et al. 2022, Mamugy 2016). A 

single pack of 14 African wild dogs was reintroduced in June 2018, and the dominant female of that pack 

had an active GPS collar during our study (Bouley et al. 2021); because African wild dogs are an 

obligately social species that live and hunt communally and there were no other packs in the park during 

our study, we considered the movement data from this female to be representative of the entire wild dog 

population in Gorongosa (Bouley et al. 2021). We rarified herbivore and lion GPS data to include only 

individuals in separate herds or prides, to ensure movement behaviors were independently sampled. We 

measured body weights of bushbuck and female nyala by weighing individuals while they were 

immobilized for collaring. Male nyala, kudu, and sable are too large to be weighed in the field; instead, 

we used chest-girth measurements for these individuals to predict body mass based on regressions that 

developed for antelopes in this study system (Daskin et al. 2022). Chest girth measurements were not 

available for elephants; we thus assumed individual weights to be equal to the average sex-specific adult 
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body mass reported in (Kingdon 1997). All animal handling procedures were in accordance with 

guidelines established by the American Society of Mammalogists (Sikes and the Animal Care and Use 

Committee of the American Society of Mammalogists 2016). Bushbuck, nyala, and kudu handling 

procedures were approved by the Animal Care and Use Committees at the University of Idaho (protocol # 

IACUC-2019-32) and Princeton University (protocol #2075F-16). Sable handling procedures were 

approved by the animal ethics committee at the University of Witwatersrand (animal ethics number 

#2013/47/2A). Elephant handling procedures were approved by the Animal Care and Use Committee at 

the University of Idaho (protocol #2015-39) and by the Gorongosa Conservation Department. Lion and 

African wild dog handling procedures were approved by the Gorongosa Conservation Department.  

We first evaluated how distance to flood waters, elevation, and proximity to termite mounds influenced 

the movement decisions of GPS-collared animals during the first two weeks after the onset of flooding 

(i.e., 04:00 15 March 2019, the hour at which >10% of water loggers in the network detected an increase 

in flood depth) using step-selection functions (SSFs; Avgar et al. 2016, Muff et al. 2019). Termite 

mounds created by fungus-farming Macrotermes spp.—substantial hillocks that can grow to >5 m tall and 

>20 m diameter—are ubiquitous throughout the wooded portions of our study area (Tarnita et al. 2017) 

and are selected by browsing antelopes owing to their dense and nutrient-rich woody plant assemblages 

(Muff et al. 2019). We predicted that mammals would avoid the edge of the flood and select for high 

ground at each of two spatial grains (higher-elevation areas and termite mounds within those areas) in the 

wake of the cyclone. We fit separate SSFs for each species for the two-week intervals before (04:00 

March 1 – 04:00 March 15, 2019) and after (04:00 March 15 – 04:00 March 29, 2019) Idai. We paired 

each observed time step (i.e., segments linking consecutive GPS relocations, which occurred at 1-hr 

intervals for bushbuck, nyala, kudu, elephant; 3-hr intervals for lion and wild dog; 8-hr intervals for sable) 

with 10 random steps drawn from the distribution of step lengths and turning angles observed for each 

individual. For each ‘used’ (actual) and ‘available’ (random) step, we extracted (i) distance to flood 

waters (m), estimated from satellite-derived flood-extent shapefiles (UNOSAT 2019), (ii) elevation (m 

above sea level), extracted from a LiDAR-based digital terrain model (0.5 m horizontal, 0.1 m vertical 

resolution) (WGS Geospatial Solutions Aerial Surveys, Ltd.; see UNOSAT 2019 for details), and (iii) 

presence or absence of a termite mound (mounds were manually digitized in a hillshade rendering of the 

LiDAR-derived digital terrain model and buffered by 10 m to account for potential error in GPS collar 

fixes; see 27 for details). We limited all observed and random steps to the extent of the LiDAR-derived 

products from which we extracted environmental covariates; one kudu was thus excluded from SSF 

analysis because its home range did not overlap with the extent of environmental covariates. Only two of 

eight GPS collars on lions in the weeks before and after Idai collected data at regular intervals and were 
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appropriate for SSF analysis. To facilitate direct comparison of model results among species, we 

standardized all predictor variables by subtracting the mean from each observation and dividing by the 

standard deviation. We compared standardized environmental covariate values between used and 

available steps in each time interval using conditional logistic regression in the survival package in R 

(Fortin et al. 2005, Therneau 2020). We considered a difference in selection between the ‘before’ and 

‘after’ cyclone windows to be statistically significant when the 95% confidence intervals around their 

respective coefficients did not overlap (Figure 2.2a, Figure B.5c, Figure B.19a).  

Three collared bushbuck died within a week of Idai’s landfall, whereas the remaining five survived until 

their collars dropped off in May 2019. To assess whether these groups exhibited different patterns of 

selection for flood edge, elevation, and termite mounds, we filtered GPS location data to include only the 

week before (04:00 8 March – 04:00 15 March 2019) and the week after Idai made landfall (04:00 15 

March – 04:00 22 March 2019) and fit separate SSFs to the data from each period for the group that 

survived and the group that died (Figure B.5c). SSF fitting procedure and statistical inference were as 

described above.  

We also evaluated whether, when, and to what extent collared individuals were displaced from their home 

ranges after the onset of flooding from Cyclone Idai. We partitioned each individual’s GPS locations into 

temporal bins that spanned (i) the month before the cyclone (04:00 15 Feb. – 04:00 15 March), and (ii) 6 

weekly bins after the onset of flooding. We then calculated (a) distance between the centroid of 

movement (i.e., geographic mean of GPS fixes) in the month before Idai and the centroids of movement 

of each weekly interval thereafter, and (b) proportional overlap between the individual’s home range 

before Idai [derived from 95% fixed-kernel utilization distributions (UD)] and each weekly home range in 

the six weeks after landfall. To compare displacement observed after Idai to normal patterns of 

movement, we used GPS data from representative non-cyclone time periods, which varied among species 

depending on data availability. For bushbuck, nyala, and kudu, we used GPS data collected during the 

same intervals around 15 March in 2015 and 2020 (years for which data in those periods were available) 

and calculated the distance between centroids of movement and UD overlap between the month before 

March 15th (date of Idai’s landfall in 2019) and each weekly interval thereafter (Figure 2.2b, Figure B.6). 

Data were not available prior to 2019 for sable, elephant, wild dog, and lion, so we partitioned GPS data 

for those species into a ‘before’ home range (1 Jan.– 1 Feb. 2019) and 6 subsequent weekly ‘after’ 

intervals for comparison (Figure 2.2b, Figure B.6, Figure B.19b). We used Welch’s two-sample t-tests to 

compare displacement metrics for each species in each interval between before- and after-cyclone 

periods.  
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We evaluated the roles of body size (log-transformed to fit model assumptions) and association with 

floodplain habitat (Figure B.1) in predicting displacement of herbivores in the aftermath of Idai using 

generalized linear mixed-effects models (GLMM) with a beta-error distribution (our proportional 

response variable was bounded by 0 and 1) and per-species random intercepts (Figure B.7). We fit the 

model using the glmmTMB() function in the glmmTMB package and inspected model residuals using the 

simulateResiduals() function in the DHARMa package in R (Brooks et al. 2017, Hartig 2022). We found 

no evidence that model assumptions were violated.  

 

Camera trap analysis 

To evaluate cyclone effects on the spatial distribution of large mammals, we used data from a systematic 

long-term camera trap grid established in 2016. Cameras (Bushnell TrophyCam; 2016–2018, n = 60; 

2018–2019, n = 48) were deployed over a 300-km2 area south of Lake Urema in the center of 5-km2 

hexagonal cells, such that each camera was ~2.4 km from six nearest neighbors (Gaynor et al. 2021). 

Cameras, with infrared sensors triggered by heat and motion, were oriented toward game trails or open 

areas showing signs of animal activity to maximize detections (Gaynor et al. 2021). Of the 48 cameras 

deployed at the time of the cyclone, 30 survived the flooding. We rarified data across years to the 30 

surviving cameras for subsequent analysis, identified the species and number of animals in each 

photograph, and generated a corresponding record of detections. We subset the database to evaluate 

mammal activity in 2019 and in two non-cyclone years (2017, 2018) for subsequent analyses. We thinned 

camera data to remove repeated sightings of the same individuals (>15 minutes apart; Gaynor et al. 2021). 

We then summed the remaining detections into month-long bins from 15 March to 15 October in each 

year. Five herbivore species—waterbuck, warthog, nyala, impala, and bushbuck—had sufficient data for 

inclusion in statistical analyses (i.e., >10 sightings in each monthly bin after March 15th in 2017, 2018, 

and 2019).   

We evaluated whether the distributions of herbivores in the months after Idai were significantly different 

than in non-cyclone years, and whether that effect varied with distance to Lake Urema (a proxy for flood 

intensity; Figure 2.1c, Figure B.3b). For each species, we used a GLMM with a negative binomial 

distribution to model the number of detections in each month at each camera, offset by the log-

transformed number of days each camera was active within each month (to account for search effort) and 

by the total number of detections across the camera trap grid in each month (to account for the potential 

impact of variable abundance among years). This analysis tested for (i) monthly differences in herbivore 

distribution after landfall in 2019 compared to the same months in non-cyclone-affected years (2017, 
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2018), and (ii) whether observed differences were modulated by distance from the lake (indicated by the 

three-way interaction among the categorical variable for cyclone occurrence, distance from lake, and 

month after landfall) (Brooks et al. 2017). A significant, negative interaction term indicated that 

herbivores were more concentrated farther from the lake after Idai than in normal years, and that that 

effect varied with month after cyclone landfall (Figure B.10). We included site and year as random 

intercepts to account for unmeasured variation among camera locations and between non-cyclone years. 

We conducted all analyses using the glmmTMB package (Brooks et al. 2017) and inspected model 

residuals with the simulateResiduals() function in the DHARMa package in R (Hartig 2022).  

 

Carnivore diet composition 

Carnivore diets were quantified using two methods. First, we used previously published observations of 

lion and wild dog kills in Gorongosa from 2017–2020 (Bouley et al. 2021). We partitioned these data into 

three periods—before cyclone, 1–3 mo. after landfall, and 4–9 mo. after landfall—to explore how prey 

selection changed after Cyclone Idai. For lions, these periods comprised n = 61, 10, and 22 observed kills, 

respectively. For wild dogs, they comprised n = 43, 5, and 23 kills, respectively.  

Kill data suggested that wild-dog (but not lion) diets shifted dramatically in the immediate post-cyclone 

period (April–June 2019). Therefore, we also used DNA metabarcoding of wild dog scats to explore 

cyclone-induced dietary turnover. Following the reintroduction of wild dogs, the Gorongosa Carnivore 

Conservation Unit collected wild-dog scat opportunistically between June 2018 and December 2019. In 

total, 102 scats were collected for DNA metabarcoding from free-ranging wild dogs. Samples were 

collected with unused nitrile gloves and placed in an unused Ziploc bag. Sampling date and location were 

recorded on the bag, which was then placed on ice for transport to the field laboratory. At the field 

laboratory, samples were frozen at -20o C until processing. Once every three months, all samples collected 

in the intervening period were thawed and processed for DNA extraction. Sample processing involved 

homogenizing each thawed sample by massaging the zip-lock bag between thumb and forefinger. A pea-

sized subsample was then transferred from the zip-lock bag to a plastic tube containing silica beads and 

750uL DNA lysis/conservation buffer (Xpedition Lysis/Stabilization Solution; Zymo Research, CA, 

USA). We then capped the tube and vortexed it for 30 s to break apart the subsample, exposing it to the 

buffer. Samples were heat-treated at 72o C for 30 min before being frozen at -20o C for transport to 

Princeton University, USA.  

In our Biosafety Level 2 facility at Princeton University dedicated to fecal DNA analysis, we extracted 

DNA from the samples using Zymo Quick-DNA Soil/Fecal Microbe MiniPrep kits (Zymo Research, CA, 
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USA) following manufacturer instructions. DNA extractions comprised batches of 29 samples (wild-dog 

samples were extracted as part of a broader extraction session involving other species) and one negative 

extraction control (750uL DNA lysis buffer). Extracted DNA from wild-dog scats was then compiled 

onto two 96-well plates for DNA amplification. We amplified DNA in the samples, targeting the 

mitochondrial 16S gene to amplify mammal DNA using an established primer pair (MamP007F, 5'-

CGAGAAGACCCTATGGAGCT-3'; MamP007R, 5'-CCGAGGTCRCCCCAACC-3'; 63). To multiplex 

PCR products, we tagged the forward and reverse primers with 8-nt tags that each differed by at least 4 

nucleotides to enable samples to be distinguished after sequencing. To limit amplification of wild-dog 

DNA, we included a wild-dog specific blocking primer (5'-

GGAGCTTTAATTAACTAACCCAAGCTTACGG-3') with a C3-spacer added to the 3' end and a six-

base overlap with MamP007F (first six bases of primer sequence, underlined). PCRs contained 2μL of 

extracted DNA, 0.5U of AmpliTaq Gold (Applied Biosystems, MA), 0.2μg BSA (New England Biolabs, 

MA), 0.2μM of each primer, 0.2mM of each dNTP (New England Biolabs, MA), 2mM MgCl2 (Applied 

Biosystems, MA), 1X GeneAmp PCR Buffer II (Applied Biosystems, MA), and 2μM of the blocking 

primer for a final volume of 20μL. Thermocycling conditions were: initial denaturing (95o C, 10 min), 45 

cycles of denaturing (95o C, 30 s), annealing (52o  C, 30 s), elongation (72o C, 30 s), and a final extension 

(72o  C, 7 min). All PCRs were performed in triplicate and included negative extraction controls, negative 

PCR controls, and positive PCR controls (where DNA template was provided as a sequence designed in 

silico to comprise: 5'-10 random bases, MamP007F, a 75-base random barcode, MamP007R, 10 random 

bases-3'). We pooled PCR products by plate and purified them with a MinElute PCR Purification kit 

(Qiagen, MD). Purified PCR products from each DNA plate were then submitted for sequencing as 

equimolar libraries to the Lewis-Sigler Institute for Integrative Genomics at Princeton University where 

Illumina tags were appended with a low-cycle PCR approach and libraries were sequenced in paired-end 

(2 x 150bp) on a NovaSeq SP 300-nt platform. 

Sequences were curated and filtered using the OBITools bioinformatic pipeline (Boyer et al. 2016). 

Forward and reverse reads were paired using illuminapairedend (minimum score = 40). Sequences were 

then assigned to the samples they came from (ngsfilter; two errors allowed) while sequences that were 

unaligned, contained ambiguous bases, or were outside the expected barcode length (40 < x < 140bp) 

were removed. Identical sequences were aggregated (obiuniq) and any sequences with only one read in 

the dataset (i.e., singletons) were removed (obigrep -p 'count>1'). Taxonomic identifiers were assigned to 

each sequence using the ecotag command and a reference database for 16S created using in silico PCR 

and the EMBL taxonomic library (release 143). Only sequences belonging to Mammalia (taxonomic ID: 

40674) were retained in the dataset. Putative chimeras and PCR errors were identified and removed using 
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the obiclean command (parameters: -d 1; -r 0.25). Sequences whose abundance was highest in controls 

were considered contaminants and removed. PCR replicates were removed if their read depth fell below a 

critical threshold (1000 reads), or if they were above the 95% quantile for contaminant read abundance. 

The consistency among PCR replicates was confirmed by comparing their composition. If replicate-

replicate dissimilarity was > 95% quantile of inter-replicate dissimilarity, or if an inter-replicate 

comparison fell within the inter-sample distribution of dissimilarity, it was removed from the dataset. 

When two or more PCR replicates remained in the dataset, their composition was averaged to give the 

mean scat-level sequence composition. Finally, we limited the data to sequences that had a perfect match 

to the reference dataset, and we removed sequences accounting for < 1% of each sample's relative read 

abundance (RRA) to reduce the likelihood of false positives (Pansu et al. 2022). 

The bioinformatically filtered dataset comprised 87 wild-dog scat samples and 17 prey sequences. To 

make these samples comparable, we rarefied their composition to 1000 reads, repeated this procedure 

1000 times, and used the average RRA of prey sequences across this ensemble to represent each sample's 

composition. To avoid pseudoreplication, we combined samples collected on the same date because wild 

dogs hunt, kill, and eat together, and more than one scat was often collected from the same den/kill on the 

same day. We therefore averaged the composition of these samples, yielding a final sample count of n = 

42. To investigate the effect of Cyclone Idai on wild-dog diet, we split the final dataset into three periods: 

before the cyclone (n = 23, sampled between June 24 and December 5, 2018); 1–3 months after landfall 

(n = 5, sampled between April 7 and June 9, 2019); and 4–9 months after landfall (n = 14, sampled 

between July 16 and December 14, 2019). With these temporal slices of wild-dog diet, we tested whether 

diets immediately following the cyclone were significantly different from pre-cyclone or later post-

cyclone diets. We evaluated whether there was an overall compositional difference among the three 

dietary periods and then tested each pair of periods separately using the adonis2 function in the R package 

vegan (Oksanen et al. 2020). We visualized these results with non-metric multidimensional scaling (using 

the Bray-Curtis dissimilarity index and the metaMDS function in vegan; Oksanen et al. 2020), averaging 

across scats from the same dietary period. One outlier sample (for which 96% of RRA came from the 

African civet, Civetticis civetta) was excluded from this analysis because this sample may have been civet 

feces misidentified as a wild-dog scat. Adjusting the post-cyclone dietary periods to balance sample sizes 

(i.e., April 7–July 30, 2019, n = 9; and August 3–December 14, 2019, n = 10) did not qualitatively alter 

results; therefore, we present the data using a June/July split because it focuses the first post-cyclone 

period on the proximate flooding effects and represents a natural break in sampling (June 9–July 16 

compared with July 30–August 3). 
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Herbivore diet composition 

As for wild dog diets, we used DNA metabarcoding to quantify the composition of herbivore diets in 

Gorongosa. Samples were collected before (2016, 2018) and after (2019) the cyclone in three seasons: the 

late wet season (April–May), early dry season (June–July, 2016 only), and late dry season (October–

November). These data were generated as part of a long-term study of the Gorongosa food web, and we 

followed previously published protocols for studying herbivore diets in Gorongosa (Atkins et al. 2019, 

Becker et al. 2021, Branco et al. 2019, Daskin et al. 2022, Guyton et al. 2020, Pansu et al. 2019, 2022, 

Potter et al. 2022, Walker et al. 2022). Raw data for samples collected from 2016–2018 are publicly 

available on Dryad in association with previous publications (https://doi.org/10.5061/dryad.63tj806 and 

https://doi.org/10.5061/dryad.sxksn02zc), and raw data for 2019 samples are deposited in a Dryad archive 

associated with this study.  

Fecal samples were collected by driving Gorongosa's road network and opportunistically collecting 

samples from defecating ungulates. Occasionally, samples were collected from animals immobilized for 

GPS-collaring (Atkins et al. 2019, Branco et al. 2019, Daskin et al. 2022, Walker et al. 2022). For each 

sample, we recorded the GPS coordinates of the defecation site and a classification of the surrounding 

habitat type. We collected samples with unused nitrile gloves and deposited them in labeled, unused zip-

lock bags, which we immediately placed on ice in a cooler until we returned to Gorongosa’s field 

laboratory for processing later the same day. There, we homogenized samples within the collection bag, 

transferred pea-sized subsamples into labeled tubes containing beads and buffer, vortexed the tubes, and 

stored them at -20°C pending transport to Princeton University, as described above for wild dogs. Each 

sample was subjected to an antiviral treatment (72°C for 30 minutes) before import into the United States, 

as mandated by US Department of Agriculture permit #130123 to RMP.  

On arrival at Princeton University, we extracted DNA from each sample as described above for wild 

dogs, including one negative extraction control per batch of 29 samples. In triplicate for each sample, we 

amplified the P6 loop of the chloroplast trnL(UAA) intron, a widely used barcode for degraded plant 

DNA, using primers with a unique 8-nt tag at the 5’ end that enabled pooling of uniquely identifiable 

PCR products for sequencing in a single high-throughput run (Taberlet et al. 2007). Sequencing libraries 

were prepared with a PCR-free approach (2016) or low-cycle PCR (2018-19), and sequencing was 

performed on Illumina MiSeq and HiSeq 2500 platforms. We processed sequenced data using the 

OBITools package (Boyer et al. 2016). These procedures were the same as described above for wild dogs, 

except that sequences with fewer than 10 reads were discarded (rather than singletons only) to optimize 

https://doi.org/10.5061/dryad.63tj806
https://doi.org/10.5061/dryad.sxksn02zc
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filtering efficiency, and that taxonomy was assigned with a local plant DNA reference library based on 

vouchered specimens collected in Gorongosa (Pansu et al. 2019). Only when the local library assignment 

score was <98%, we assigned taxonomy by secondary comparison to a global database compiled from the 

European Molecular Biology Laboratory (release 143) and local databases of plants from Serengeti 

National Park, Tanzania, and Laikipia, Kenya (Gill et al. 2019). PCR replicates were retained if they were 

within the 95% quantile of overall inter-replicate dissimilarity and did not fall within the distribution of 

inter-sample dissimilarities. We averaged the number of reads across all retained PCR replicates for each 

sample and removed molecular operational taxonomic units (mOTUs) accounting for <1% of reads per 

sample (Guyton et al. 2020). Finally, we rarified sample read depth to 1,250 reads to facilitate 

comparisons among samples and converted the mOTU-by-sample matrices into proportional abundance 

(i.e., relative read abundance, RRA) of each plant mOTU per sample. As in our previous dietary studies 

from Gorongosa, we use RRA data for inference given evidence that RRA of the trnL-P6 marker (i) 

provides a reasonable first-order approximation of proportional consumption (Craine et al. 2015, 

Kartzinel et al. 2015, Willersley et al. 2014), (ii) has yielded inferences in our previous studies that 

qualitatively match those based on presence-absence data (Guyton et al. 2020, Kartzinel et al. 2015, 

Pansu et al. 2019), and (iii) generally provides a fuller and more accurate characterization of population-

level diets than presence-absence data alone (Deagle et al. 2019, Littleford-Colquhoun et al. 2022). The 

final dataset comprised 13 herbivore species, 1470 fecal samples, and 332 mOTUs (Table B.3). 

We evaluated the cyclone’s impact on herbivores' diet composition in two complementary ways. First, for 

each herbivore species and seasonal period, we visualized dietary Bray-Curtis dissimilarity between each 

pair of fecal samples using non-metric multidimensional scaling [NMDS; metaMDS() function in vegan 

(Oksanen et al. 2020)] of samples collected in 2018 (no cyclone) and 2019 (cyclone) and tested for 

significant differences as a function of year using permutational multivariate analysis of variance 

(perMANOVA; Figure B.12).  

Second, to test whether dietary turnover from before to after Cyclone Idai were greater than usual, we 

computed the population-level diet of each species (the mean RRA of each mOTU across samples) and 

compared Bray-Curtis dissimilarity [vegdist() function in vegan (Oksanen et al. 2020)] for each species 

between the late-dry season 2018 and the late-wet season 2019 (the sampling periods immediately before 

and after Idai) with that observed between all other cross-seasonal pairs of sampling periods available for 

each species (late-wet, early-dry, late-dry seasons of 2016, 2018, and 2019, excluding the cyclone-

affected late-wet season of 2019), both consecutive and nonconsecutive. Bushbuck and hartebeest were 

excluded from this analysis owing to low sample sizes in the 2019 late-wet season. To ensure that sample-
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size imbalance among seasons and species (mean = 17.4, min = 8, max = 40) did not otherwise bias our 

results, we randomly rarefied a species' samples from a given collection period (season and year) to n = 8, 

the minimum sample size among species sampled in every season and calculated average population-level 

diets and turnover based on this subset. We repeated this process 1000 times and used the mean turnover 

value for each comparison in our analyses. We tested whether turnover across the cyclone-affected period 

was greater than usual using a GLMM with a beta error distribution, a fixed effect of cyclone occurrence, 

and random intercepts for herbivore species. Note that the inclusion of nonconsecutive seasons/years in 

the baseline for this comparison makes for an liberal definition of a ‘normal’ seasonal turnover, and thus a 

conservative test of the dietary anomaly induced by Cyclone Idai, because the baseline includes turnover 

between disparate seasons/years (e.g., the dry season of 2016 with the wet season of 2018).  

 

Herbivore dietary attributes 

To test whether herbivore dietary diversity changed with cyclone-induced vegetation shifts, we quantified 

diet breadth as the number of plant families present per fecal sample (per sample data avoid confounding 

effects of sample size on richness estimates) in each season of 2016, 2018, and 2019 (data were available 

for all seasons in the latter two years, and for the early dry season in 2016). For each season, we used a 

Poisson GLMM with a fixed categorical effect for year and per-species random intercepts to test if 

family-level richness was significantly different in the cyclone year, 2019.  

We tested whether proportional consumption of grasses—the primary axis of dietary differentiation in 

large herbivores (Pansu et al. 2022)—shifted in response to cyclone-induced flooding and accompanying 

shifts in understory productivity (Figure B.3a) using beta GLMMs for each season with a fixed 

categorical effect of year and per-species random intercepts. Here, we modeled mean grass RRA per 

species rather than per sample to avoid an inordinately large number of zeroes and also used zero-

inflation terms for the dry-season models to satisfy model assumptions.  

We analyzed forage traits using the locally collected plant-trait database and protocols of Potter et al. 

(2022). We focused a priori on a subset of 6 plant traits associated with forage quality and/or 

susceptibility to flooding: mean field-measured height of the plant species (taller plants such as trees and 

shrubs should be less depleted by inundation), digestible protein content (a chief and often limiting 

macronutrient), dry-matter digestibility (another key component of diet quality), lignin (an indigestible 

structural component of cell walls that is most abundant in woody plants), phosphorus (a major mineral 

nutrient), and sodium (another micronutrient that is often limiting for herbivores). Following Potter et al. 

(2022) dietary sequences that did not match plants in the traits dataset were discarded and the RRA for 
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each sample recomputed; samples with < 60% of original reads matched were removed (n = 1360 of 1470 

samples retained; median reads preserved = 98.1%). We then multiplied the RRA of each mOTU by the 

trait value of the matched plant taxon to obtain a weighted estimate of each trait in each sample. We 

tested for differences in these attributes (per sample) using linear mixed-effects models for each season 

with fixed categorical effects of year and per-species random intercepts; the plant-height response was log 

transformed and the other metrics (expressed as proportions) were logit transformed.  

We used the adonis2() function in the vegan package in R to conduct perMANOVA tests of niche 

differentiation between each pair of species in each season and year (Oksanen et al. 2020). We used the 

R2 statistic from each perMANOVA as an index of the strength of niche partitioning (Pansu et al. 2022): 

greater R2 values indicate that herbivore species' identity explains a greater proportion of variance in 

dietary dissimilarity and are thus indicative of stronger interspecific differentiation. Because the results of 

adonis2() can be influenced by sample size and sample sizes differed among sampling periods, we 

randomly rarefied species' samples to reduce inter-annual differences between sample sizes. Species 

represented by n > 8 samples in a sampling period were randomly rarefied to n = 8 samples, this 

procedure was repeated 1000 times, and the mean R2 value across iterations was used in analyses. To 

evaluate whether the strength of niche differentiation differed between 2019 and non-cyclone years (2016, 

2018), we analyzed these R2 values using per-season GLMMs with a beta-error distribution, a fixed 

categorical effect of year, and per-species random intercepts.  

 

Nutritional condition 

We compared mean nutritional condition of bushbuck, nyala, and kudu after Cyclone Idai (June–July 

2019) with mean condition of these species in years prior to the cyclone (June–July 2014, 2015, 2016, 

and 2018). Nutritional condition reflects endogenous energy reserves available for maintenance, growth, 

and reproduction and is a key correlate of fitness in ungulates, influencing survivorship, pregnancy rates, 

vulnerability to predation, and neonatal birth mass (Parker et al. 2009). Data on nutritional condition were 

collected during capture and collaring for an ongoing study of spiral-horned antelopes in Gorongosa 

(details in Atkins et al. 2019, Daskin et al. 2022, Walker et al. 2022).  

While antelope were immobilized, we measured body dimensions (body and hind-foot length, chest 

girth), collected ultrasonography data (maximum rump-fat depth, thickness of biceps femoris and 

longissimus dorsi muscles), and conducted standardized palpation scoring of the sacrosciatic ligament, 

lumbar vertebrae, sacrum, base of the tail, and caudal vertebrae [based on protocols developed for North 

American ungulate (Cook et al. 2010)]. Because equations for converting these measurements into 
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estimates of ingesta-free body fat have not been validated for African ungulates, we followed an approach 

that we have previously used for Gorongosa antelopes (Atkins et al. 2019, Becker et al. 2021, Walker et 

al. 2022) to develop an index of relative nutritional condition using principal component analysis. 

Together, principal component 1 (PC1) and principal component 2 (PC2) explained 80% of the variance 

in these data (Table A.1). Nutritional condition metrics associated with body size (e.g., muscle 

thicknesses, body length) loaded most strongly onto PC1, whereas those associated with body fat (e.g., 

palpation scores, max fat) loaded most strongly onto PC2 (Table A.2; Figure A.2). Thus, we used PC2 as 

an index of nutritional condition (i.e., endogenous fat reserves) and report the inverse of PC2 such that 

larger values equate to more available fat, consistent with methods and results in (Atkins et al. 2019, 

Becker et al. 2021, Walker et al. 2022). We used Welch’s two-sample t-tests (Figure 2.4a) in R to test for 

differences in mean nutritional condition among individuals of each species before (2014–2016, 2018) 

and after Idai (2019).  

 

Aerial wildlife surveys 

Gorongosa conducts biennial aerial wildlife counts (Stalmans et al. 2019, Stalmans & Peel 2020). We 

used data from surveys conducted in 2014, 2016, 2018, and 2020 (the four years in which a total count 

was conducted within a standardized 193,500-ha block at the core of the park) to evaluate population 

trends before versus after Idai. Detailed methods are in (Stalmans et al. 2019). Briefly, counts were 

conducted by trained park personnel from a Bell JetRanger helicopter with all four doors removed to 

enhance visibility. Surveys were conducted at a constant height of 50-55 m above the ground at 96 km hr-

1 along a series of parallel, 500-m wide transects. All animals within 250 m on either side of the center 

line were individually counted and their location recorded using a GPS; when a large herd was observed, 

the pilot circled to enable an accurate count, and when necessary, photographs were used to count all 

individuals. M.E.S. participated in all aerial surveys, and all surveys were flown by the same pilot (M. 

Pingo, Sunrise Aviation).  

We used count data from 2014–2018 to establish study species’ association with floodplain habitat under 

normal (non-cyclone) conditions. Following Atkins et al. (2019), we quantified association with 

floodplain as the mean relative abundance of each species in floodplain habitat across survey years [i.e., 

the proportion of individuals counted within the treeless interior area around Lake Urema, as delineated 

by a pre-existing habitat classification (Stalmans & Beilfuss 2008)].  

We evaluated whether the proportional change in herbivores’ abundance between two pairs of 

consecutive ‘normal’ survey years (2014–2016, 2016–2018) differed significantly from the proportional 
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change in abundance between surveys before vs. after Idai (2018–2020) to establish whether the cyclone 

impacted herbivore trajectories. We calculated proportional change in abundance of each herbivore 

population as the difference in total number of individuals counted between surveys divided by the 

number of individuals counted in the earlier survey [e.g., (count in 2016 - count in 2014)/count in 2014]. 

We fit a linear mixed-effects model with a Gaussian-error distribution, proportional change in abundance 

as the response variable, a categorical indicator of cyclone incidence (‘cyclone’, ‘no cyclone’) as the main 

predictor, and a per-species random intercept. We fit model using the glmmTMB() function in the 

glmmTMB package and inspected model residuals using the simulateResiduals() function in the DHARMa 

package in R (Brooks et al. 2017, Hartig 2022), yielding no evidence that model assumptions were 

violated. Next, we evaluated whether herbivore species’ body mass, affiliation with exposed habitat, or 

proportion of diet normally made up of grasses (mean grass RRA in the early dry seasons of 2016 and 

2018) explained the patterns of population growth/decline before or after Idai using linear regression. We 

used Akaike information criterion corrected for small sample size (AICc) for model selection among the 

set of 16 candidate models including main effects and interactions of herbivore mass, habitat affiliation, 

and diet composition (Table B.2).    
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Supplemental Tables 

Table B.1. Parameter estimates from species-specific models of monthly herbivore distribution (proportion of 

detections at each camera site) after March 15th in the cyclone year (2019) versus two representative ‘normal’ 

years (2017, 2018). Columns are GLMM parameter estimates (β), associated standard errors (SE) and P-values. 

Predictors are distance (m) from Lake Urema, log10-transformed to adhere to model assumptions (‘lake’); time after 

cyclone landfall on 15 March 2019 (‘month’, continuous variable of month since landfall); and whether or not a 

cyclone occurred in the given year (‘cyclone’, coded as binary variable ‘1’, non-cyclone years as ‘0’). Models 

pertain to results presented in Figures B.9-10. Boldface denotes significant effects (P ≤ 0.05). The three-way 

cyclone:lake:month interaction reflects evidence that the cyclone changed herbivore’s distribution relative to Lake 

Urema compared to typical years and that the effect changed over the months since landfall (see: Figure B.10). 

Waterbuck (Kobus ellipsiprymnus) β SE P-value 

Intercept 11.83 2.86 < 0.001 

cyclone -17.40 4.46 < 0.001 

lake -2.06 0.32 < 0.001 

month -0.70 0.50 0.16 

cyclone:lake 1.99 0.50 < 0.001 

cyclone:month 2.33 0.86 0.007 

lake:month 0.07 0.06 0.22 

cyclone:lake:month -0.26 0.10 0.006 

Warthog (Phacochoerus africanus) β SE P-value 

Intercept 10.67 2.80 < 0.001 

cyclone -22.68 4.08 < 0.001 

lake -1.97 0.31 < 0.001 

month -1.46 0.39 < 0.001 

cyclone:lake 2.53 0.45 < 0.001 

cyclone:month 3.83 0.83 < 0.001 

lake:month 0.17 0.04 < 0.001 

cyclone:lake:month -0.42 0.09 < 0.001 

Nyala (Tragelaphus angasii) β SE P-value 

Intercept -19.40 6.21 0.002 

cyclone -9.86 6.89 0.15 

lake 1.35 0.68 0.05 

month -0.04 0.96 0.96 

cyclone:lake 1.02 0.75 0.17 
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cyclone:month 4.04 1.42 0.004 

lake:month 0.002 0.11 0.97 

cyclone:lake:month -0.43 0.16 0.005 

Impala (Aepyceros melampus) β SE P-value 

Intercept 12.66 4.60 0.006 

cyclone -15.22 5.23 0.004 

lake -2.27 0.51 < 0.001 

month -2.76 0.55 < 0.001 

cyclone:lake 1.77 0.57 0.002 

cyclone:month 2.85 1.05 0.007 

lake:month 0.32 0.06 < 0.001 

cyclone:lake:month -0.32 0.12 0.005 

Bushbuck (Tragelaphus sylvaticus) β SE P-value 

Intercept 3.70 2.92 0.20 

cyclone -2.11 4.27 0.62 

lake -1.14 0.32 < 0.001 

month -0.22 0.45 0.46 

cyclone:lake 0.21 0.47 0.66 

cyclone:month 0.45 0.88 0.61 

lake:month 0.03 0.05 0.55 

cyclone:lake:month -0.04 0.10 0.67 
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Table B.2. Candidate models for predicting proportional changes in herbivore abundance between 2018 

(before Cyclone Idai) and 2020 (after the cyclone). Each model is an ordinary least squares regression, and 

candidate predictors included log-transformed herbivore body mass (‘Mass’), proportion of diet normally composed 

of grass (‘Grass’), and affiliation with floodplain habitat (‘Floodplain’).  

Model Adj. R2 AICc ΔAICc AICŵ 

Mass 0.28 7.04 0 0.31 

Floodplain 0.22 8.00 0.96 0.19 

Mass + Floodplain 0.36 8.54 1.50 0.15 

Mass + Grass 0.34 8.86 1.82 0.13 

Intercept only NA 8.90 1.86 0.12 

Grass -0.005 11.29 4.25 0.04 

Grass + Floodplain 0.20 11.43 4.39 0.03 

Mass + Grass + Floodplain 0.40 11.95 4.91 0.03 

Mass + Grass + Floodplain + 

Mass:Grass 

 

0.42 17.24 10.20 0.00 

Mass + Grass + Floodplain + 
Mass:Floodplain 

 

0.41 17.67 10.63 0.00 

Mass + Grass + Floodplain + 
Grass:Floodplain 

 

0.32 19.34 12.30 0.00 

Mass + Grass + Floodplain + 
Mass:Floodplain + Mass:Grass 

 

0.38 26.79 19.75 0.00 

Mass + Grass + Floodplain + 

Mass:Grass + Grass:Floodplain 
 

0.37 27.12 20.08 0.00 

Mass + Grass + Floodplain + 

Mass:Floodplain + Grass:Floodplain 
 

0.35 27.47 20.43 0.00 

Mass + Grass + Floodplain + 

Mass:Floodplain + Mass:Grass + 

Grass:Floodplain 
 

0.28 42.37 35.33 0.00 

Mass + Grass + Floodplain + 

Mass:Floodplain + Mass:Grass + 
Grass:Floodplain + Mass:Grass:Floodplain 

0.20 67.44 60.40 0.00 
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Table B.3. Summary of large-herbivore fecal samples used for analyses of diet composition, in descending 

order of total sample size. LWS = late-wet season, EDS = early-dry season, and LDS = late-dry season. The final 

row reports the mean number of samples per species in each collection period. Late-wet season sample sizes for 

bushbuck and hartebeest were insufficient for analysis. 

  Collection periods 

Common name Latin name 
2016 

EDS 

2018 

LWS 

2018 

EDS 

2018 

LDS 

2019 

LWS 

2019 

EDS 

2019 

LDS 

Waterbuck 
Kobus 

ellipsiprymnus 
40 18 33 16 20 30 17 

Warthog 
Phacochoerus 

africanus 
19 20 30 12 14 28 14 

Impala 
Aepyceros 

melampus 
23 25 30 19 22 29 18 

Oribi Ourebia ourebi 16 13 28 16 9 30 16 

Reedbuck 
Redunca 

arundinum 
12 12 28 15 11 30 15 

Elephant Loxodonta africana 21 15 22 19 15 15 15 

Sable Hippotragus niger 17 6 18 15 22 18 14 

Wildebeest 
Connochaetes 

taurinus 
29 13 16 15 12 7 11 

Kudu 
Tragelaphus 

strepsiceros 
13 13 20 14 13 14 15 

Nyala 
Tragelaphus 

angasii 
10 13 15 10 17 14 13 

Buffalo Syncerus caffer 17 11 12 12 11 9 8 

Bushbuck 
Tragelaphus 

sylvaticus 
18 0 16 13 0 15 11 

Hartebeest 
Alcelaphus 

buselaphus 
12 0 14 14 0 8 12 

Mean  19 14.5 21.7 14.6 15.1 19 13.8 
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Supplemental Figures 

 

 

Figure B.1. The 13 ungulate species in this study spanned a broad spectrum of body size and affiliation with 

low-elevation floodplain habitat. Body size is reported as the mean mass for each species given by Kingdon (1977) 

and log-transformed to facilitate plotting. Body mass of study species spanned two orders of magnitude and a broad 

range of association with floodplain habitat (nyala, 12%, to reedbuck, 81%). Body size and floodplain association 

were not correlated (Pearson’s correlation test: r = 0.04, df = 38, P = 0.80).  
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Figure B.2. Three primary habitats typify our study area within Gorongosa. (A) Our study area lies south of 

Lake Urema in the Rift Valley between the higher-elevation Rift escarpments. (B) A representative photo of the 

interior floodplain, a low elevation (8-20 m above sea level), seasonally flooded lawn of grasses and forbs. (C) A 

representative photo of floodplain-savanna transition (20-25 m above sea level), a sparsely wooded habitat 

characterized by intermittent flooding and stands of flood-tolerant trees. (D) A representative photo of savanna 

woodland (> 25 m above sea level), a habitat that supports a diverse community of tree species and a full continuum 

of canopy cover.   
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Figure B.3. Heavy cyclone rains caused flood waters to rise rapidly and to persist for longer and at greater 

depths than in a typical year. (A) Thin purple lines show monthly rainfall during each non-cyclone years (2011-

2018, 2020); thick purple line shows mean monthly rainfall across all non-cyclone years; thick yellow line shows 

monthly rainfall in the year of Idai. Cyclone Idai (March 2019) more than tripled the typical amount of rainfall. (B) 

Flood waters extended farther into the road network (red lines) and persisted longer (blue-yellow color scale) in the 

year Cyclone Idai made landfall (2019, top maps) than in the subsequent year (2020, bottom maps). White stars 

mark Lion House’s location within the study area, to contextualize the photographs in Figure B.4.  
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Figure B.4. Time-lapse photographs taken from Lion House, a structure at the floodplain-grassland interface, 

showing the flood progression. (A) Lion House (>5 km from Lake Urema, see Figure B.3) before Idai (early 

March 2019) when the seasonal flood waters had largely receded in the surrounding floodplain. This picture was 

taken via drone by the Gorongosa Restoration Project. (B) Lion House was submerged by flood waters following 

Idai to the extent that only the roof remained above the water line (photo date: March 22, 2019). This picture was 

taken from a helicopter during post-Idai humanitarian aid efforts by the Gorongosa Restoration Project. Over the 

course of two days (15-17 March 2019; C-F), flooding prompted by Cyclone Idai rose by >3-m adjacent to Lion 

House and persisted for ~2 months (G,H). Photos courtesy of Dr. Piotr Naskrecki.  
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Figure B.5. Body size and movement behaviors of bushbuck that died (n = 3) versus those that survived (n = 

5) after Cyclone Idai made landfall. Bushbuck that died in the flood were smaller than those that survived (A) and 

included the two smallest (of five) females and the single smallest (of three) male (B). Boxplots show the median 

and interquartile range; whiskers show the minimum and maximum weights of each group. (C) Coefficients and 

95% confidence intervals (CIs) from step-selection functions (SSFs) that quantified selection for elevation, termite 

mounds, and distance to flood waters in the week before (purple) and after (yellow) Idai passed over the park. 

Positive coefficients are indicative of selection and negative coefficients of avoidance; CIs not overlapping zero 
indicate significant selection or avoidance; CIs not overlapping each other indicate significant differences in 

movement behavior before vs. after cyclone landfall. Although bushbuck that perished in the aftermath of Cyclone 

Idai significantly increased their selection for higher elevations and termite mounds (indicated by non-overlapping 

CIs for all coefficients estimated before and after Cyclone landfall), they were not able to avoid the flood edge 

(indicated by positive coefficients) and ultimately died.  
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Figure B.6. Many GPS-collared herbivores moved away from their home-range centroids to a greater extent after (yellow) than before (purple) Cyclone 

Idai. Thin lines show individual movements; thick lines show the mean across individuals. Within the first week after Idai’s landfall, bushbuck (2019: n = 8) had 

moved significantly farther from their home ranges centroids than normal (Welch’s two sample t-test:  𝑋𝑐𝑦𝑐𝑙𝑜𝑛𝑒  = 0.95, 𝑋𝑛𝑜 𝑐𝑦𝑐𝑙𝑜𝑛𝑒= 0.18, t = 2.59, P = 0.03), an 

effect that intensified over the next week (𝑋𝑐𝑦𝑐𝑙𝑜𝑛𝑒= 2.70, 𝑋𝑛𝑜 𝑐𝑦𝑐𝑙𝑜𝑛𝑒  = 0.22, t = 5.26, P < 0.001) and persisted over the next month. Kudu (2019: n = 12) had 

also moved significantly farther away from their home-range centroids in the week after landfall  (𝑋𝑐𝑦𝑐𝑙𝑜𝑛𝑒= 1.04, 𝑋𝑛𝑜 𝑐𝑦𝑐𝑙𝑜𝑛𝑒= 0.48, t = 3.23, P = 0.004), but 

returned to normal patterns of movement within a month. Some individual nyala, sable, and elephant exhibited similarly anomalous displacement from their 

home range centroids after the cyclone, but these trends were not pronounced at the population level [nyala (2019: n = 4), 0-1 week: 𝑋𝑐𝑦𝑐𝑙𝑜𝑛𝑒= 0.31, 𝑋𝑛𝑜 𝑐𝑦𝑐𝑙𝑜𝑛𝑒= 

0.33, t = -0.17, P = 0.87; sable (n = 3), 0-1 week: 𝑋𝑐𝑦𝑐𝑙𝑜𝑛𝑒= 0.93, 𝑋𝑛𝑜 𝑐𝑦𝑐𝑙𝑜𝑛𝑒= 0.74, t = 0.46, P = 0.67; elephant (n  = 13), 0-1 week: 𝑋𝑐𝑦𝑐𝑙𝑜𝑛𝑒= 6.63, 𝑋𝑛𝑜 𝑐𝑦𝑐𝑙𝑜𝑛𝑒= 

6.65, t = -0.01, P = 0.99].  
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Figure B.7. Herbivore species’ affiliation with low-elevation habitat predicted individual-level displacement 

after Idai. Floodplain association significantly predicted the magnitude of GPS-collared individuals’ displacement 

[overlap with home ranges estimated by utilization distributions (UD) via 95% kernel density estimation] in the first 

week after Idai, whereas body mass did not have a significant effect after accounting for habitat affiliation (mixed-

effects model with a beta-error distribution and per-species random intercepts: βfloodplain = -6.49, SE = 1.51, P < 

0.001; βlog(mass) = 0.25, SE = 0.21, P = 0.24). Model-predicted effects (black line with shaded 95% confidence 

intervals) illustrate the strength and direction of each relationship.   
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Figure B.8. Spatial extent of camera trap grid and flood sensor network relative to Lake Urema. 30 of 48 

camera traps deployed in the park in 2019 produced usable data (stars, surviving cameras; grey dots, failed cameras 

after Idai; white dots, camera locations that were vacant for maintenance at the time of Cyclone Idai).
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Figure B.9. The distribution of several common herbivore species shifted away from the floodplain and into higher-elevation areas after Idai. 

Distribution (proportion of total detections per camera trap day) of five well-sampled herbivore species relative to camera distance from Lake Urema (binned to 

facilitate visualization as ‘near’, ‘mid’, and ‘far’) in the year Cyclone Idai made landfall (2019; yellow line) and in two representative non-cyclone years (purple 

line, average across 2017 and 2018). Camera-grid locations in each bin (here including cameras that were both active and inactive during the cyclone for ease of 

visualization; see Figure B.8), are denoted with black dots at right). Vertical lines on each figure panel show the date Idai made landfall in 2019. In general, 

herbivores were distributed in higher-elevation areas farther from Lake Urema after Cyclone Idai than in normal years, and this effect persisted for varying 

durations across species (Table B.1, Figure B.10).
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Figure B.10. Predicted camera-trap detection rate as a function of distance from Lake Urema in the first 

month after Idai (15 March – 15 April) vs. the same period in non-cyclone years (2017-2018). We fit a GLMM 

with a negative binomial distribution to the data for each species (A-E) to test for differences in distribution in each 

month after landfall in 2019 and the same month in non-cyclone-affected years and to evaluate whether distance 

from the lake modulated those relationships (site and year included as random intercepts, offset terms included to 

account for search effort and total detections; see Materials and Methods). Three-way interactions between cyclone 
incidence, month, and distance from the lake were significant for waterbuck (A), warthog (B), and impala (D), as 

illustrated by differences in slope between ‘cyclone’ and ‘no cyclone’ periods (table S1). The three-way interaction 

was also significant for nyala (C), though the effect was driven by shifts in nyala distribution after the first month 

post-cyclone, as illustrated by similar slopes in the 15 March – 15 April ‘cyclone’ and ‘no cyclone’ period.  
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Figure B.11. Understory plant phenology during the year of Cyclone (2019; yellow) relative to bracketing 

years (2000-2018, 2020; purple) at two different spatial scales (red polygons). Top graphs in each panel show 

mean (± SE) NDVI values; bottom graphs show Z-scores indicating significant differences (|Z| > 2) between 2019 

and non-cyclone years (A) In the area of Idai-induced flooding, we observed significant differences in NDVI in 

March–May and October of 2019 compared to normal years. (B) These effects were muted when the focal area was 

expanded to include higher-elevation habitat outside the flood zone [here, the 95% minimum convex polygon of 

location data from GPS-collared spiral-horned antelopes in the years 2014-2019 (Daskin et al. 2022)]. 
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Figure B.12. Nonmetric multidimensional scaling ordinations of Bray-Curtis dietary dissimilarity after Cyclone Idai (2019; yellow) relative to non-

cyclone years (2018, 2016; purple). Each point represents one fecal sample, with distance between points reflecting degree of dissimilarity; ellipses show 95% 
confidence level derived from the multivariate t-distribution and represent diet breadth for each species in the (A) late-wet season, (B) early-dry season, and (C) 

late-dry season with a. Sample sizes are in table S3. 2016 data were available only for the early-dry season (B), and bushbuck and hartebeest are omitted from the 

late-wet season (A) owing to insufficient sample size. P-values are from pairwise perMANOVA tests between cyclone and non-cyclone years for each species 

within each season; all but 5 of 36 tests (kudu in the late-wet and early-dry seasons, waterbuck in the early- and late-dry seasons, reedbuck in the late-dry season) 

indicated statistically significant dietary differentiation between cyclone and non-cyclone years, although the magnitudes of these differences varied.
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Figure B.13. Proportional consumption of grasses after Idai (2019; yellow) relative to non-cyclone years 

(2016, 2018; purple). Y-axes show relative read abundance (RRA) of all dietary sequences corresponding to 

plants in the family Poaceae; points and error bars show mean ± SE. Species are ordered from left to right in 

decreasing order of proportional grass consumption. Sample sizes are in Table B.3. As in other herbivore diet 

analyses, 2016 data were available only for the early-dry season, and bushbuck and hartebeest were omitted 
from wet season contrasts owing to insufficient sample size. Overall, proportional grass consumption was 

significantly lower in all seasons after Idai than in 2018, albeit not relative to the 2016 early-dry season 

(GLMM, beta-error distribution, fixed effect of year, per-species random intercepts; late wet: β2018 = 0.73, SE = 

0.12, P < 0.001; early-dry: β2016 = 0.12, SE = 0.21, P = 0.56; β2018 = 0.57, SE = 0.23, P = 0.01; late-dry, β2018 = 

0.46, SE = 0.19, P = 0.02).  
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Figure B.14. Herbivore dietary richness was greater after Cyclone Idai (2019, yellow) than in non-cyclone 

years (2016, 2018; purple). Points and error bars show mean ± SE plant families detected per herbivore fecal 

sample. Sample sizes are in Table B.3. For each season, we tested whether per-sample dietary richness differed 

between years using a mixed-effects model with a Poisson error distribution, fixed effect of year, and per-

species random intercepts. Dietary richness was greater in all seasons after Idai than in previous years, although 

statistical support was marginal for the early-dry season comparison with 2018 (late-wet: β2018 = -0.29, SE = 

0.04, P < 0.001; early-dry: β2016 = -0.09, SE = 0.04, P = 0.02; β2018 = -0.06, SE = 0.04, P = 0.09; late-dry β2018 = 

-0.17, SE = 0.04, P < 0.001).        
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Figure B.15. Nutritional quality metrics of herbivore diets after Cyclone Idai (2019, yellow) relative to 

non-cyclone years (2016, 2018; purple). Points and error bars show mean ± SE. We fit separate linear mixed-

effects models with per-species random intercepts to evaluate the effect of Idai on percent dry-matter 

digestibility (A), lignin (B), phosphorus (C), and sodium (D) in each season. A Gaussian distribution was used 

because it produced smaller deviations in model residuals from theoretical quantiles than the beta distribution. 

(A) Digestibility was non-significantly lower after Idai in the late-wet (β2018 = 0.01, SE = 0.02, P = 0.49) and 

early-dry seasons (β2016 = 0.03, SE = 0.02, P = 0.14; β2018 = 0.03, SE = 0.02, P = 0.15) but higher than normal in 
the late-dry season (β2018 = -0.05, SE = 0.02, P = 0.05), corresponding with the unseasonal flush of understory 

plant productivity (Fig. 3a, fig. S11). (B) Lignin content, which disproportionally reduces digestibility and is 

associated with consumption of woody plants (Potter et al. 2022), was significantly higher than normal 

throughout the year after Idai (late-wet: β2018 = -0.10, SE = 0.04, P = 0.01; early-dry, β2016 = -0.05, SE = 0.03, P 

= 0.15; β2018 = -0.12, SE = 0.03, P < 0.001; late-dry: β2018 = -0.14, SE = 0.04, P < 0.001). (C) Phosphorus 

content was lower than normal after Idai in all seasons (late-wet: β2018  = 0.07, SE = 0.03, P = 0.005; early-dry: 

β2016  = 0.04, SE = 0.03, P = 0.12; β2018 = 0.16, SE = 0.03, P < 0.001; late-dry: β2018 = 0.07, SE = 0.03, P = 0.02). 

(D) Sodium content was significantly lower than normal in the late-wet (β2018  = 0.25, SE = 0.06, P < 0.001) and 

early-dry (β2016  = 0.21, SE = 0.06, P = 0.001; β2018 = 0.34, SE = 0.06, P < 0.001) seasons after Idai, but 

rebounded by the late-dry season (β2018 = -0.11, SE = 0.07, P = 0.10).  



140 

 

 

 

Figure B.16. Diet quality (digestible protein content) for bushbuck, nyala, and kudu after Cyclone Idai 

(2019; yellow) relative to non-cyclone years (2016, 2018; purple). Points and error bars show mean ± SE. We 

show data for these three species individually (cf. Figure 2.3c) to support the link between post-cyclone shifts in 

diet quality and the observed shifts in nutritional condition (Fig. 4a); in general agreement with those trends, 

Cyclone Idai depressed diet quality for smaller-bodied species (bushbuck and nyala) in the intervals leading up 

to and encompassing the body-condition measurements (conducted in the early-dry season), whereas kudu diets 

were significantly more protein rich in the late-wet season after Idai and only marginally poorer in the early-dry 

season Bushbuck diets were lower in digestible protein after Cyclone Idai in both seasons for which data are 

available, although this difference was non-significant for the early-dry season comparison with 2016. 

Bushbuck: early-dry: β2016 = 0.13, SE = 0.13, P = 0.32; β2018 = 0.51, SE = 0.13, P < 0.001; late-dry: β2018 = 0.30, 

SE = 0.18, P = 0.09). Nyala: late-wet: β2018 = 0.10, SE = 0.05, P = 0.05; early-dry: β2016 = 0.07, SE = 0.04, P = 

0.10; β2018 = 0.05, SE = 0.04, P = 0.19; late-dry: β2018 = -0.12, SE = 0.07, P = 0.09. Kudu: late-wet: β2018 = -0.05, 
SE = 0.02, P = 0.03; early-dry: β2016 = 0.04, SE = 0.03, P = 0.10; β2018 = 0.04, SE = 0.03, P = 0.10; late-dry: β2018 

= 0.05, SE = 0.04, P = 0.16. 
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Figure B.17. Abundance of large mammals in the years before (purple) and after (yellow) Cyclone Idai. 

Data are from Gorongosa’s biennial helicopter-based wildlife counts, except for wild dog for which we used 

monitoring data from Gorongosa’s Conservation Program. Data are from total counts conducted over a 

standardized 193,500 ha area in the core of the park; lions are difficult to count from the air and these data 

underestimate total abundance, but we consider them a reliable index of relative abundance across years. 
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Figure B.18. Carcasses were counted as part of the October 2020 aerial wildlife survey in Gorongosa. 

Carcasses were not counted in wildlife surveys prior to 2020 but were systematically counted in that year (7 

months after Cyclone Idai) when observers spotted an unusually high number of dead animals. (A) Five 

waterbuck carcasses around a channel in the floodplain. (B) Distribution of waterbuck carcasses (pink dots) 

observed along a dedicated 250 km x 500 m wide transect (orange outline). Observers counted an average of 

2.93 dead waterbuck per km2 along the transect, and densities were more than 30-fold higher in the floodplain 

(7.44 per km2) than in savanna-woodland (0.24 per km2 ). By comparison, waterbuck densities were only 5-fold 
higher in the floodplain than the savanna in 2018, suggesting that prolonged inundation and food scarcity in the 

floodplain after Cyclone Idai (Becker et al. 2021). 
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Figure B.19. Carnivore movement behavior after Cyclone Idai. (A) Coefficients and 95% confidence 

intervals from step-selection functions (SSFs) from GPS telemetry data for Gorongosa’s two apex carnivore 

species, showing selection for elevation, termite mounds, and distance to flood waters in the two weeks before 
(purple) and two weeks after (yellow) Idai passed over the park (analogous to herbivore data in Figure 2.2). 

African wild dogs and lion increased their selection for higher elevations and their avoidance of flood waters 

after Idai, lions significantly so (evidenced by non-overlapping confidence intervals). Only two of eight GPS 

collars on lions in the weeks before and after Idai collected data at regular intervals and were appropriate for 

SSF analysis. (B) Some carnivores moved away from their home-range centroids (top, bold yellow line) and 

spent less time in their original home ranges (bottom, bold yellow line) in the weeks after Idai made landfall 

than in periods unaffected by a cyclone (purple line; comparing movement 1 Jan. – 1 Feb. to movement in 

weekly bins thereafter), though not significantly so.  
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Figure B.20. Diets of lion and African wild dog before and after Cyclone Idai. (A) The proportion of prey 

species in documented lion kills did not shift substantially after the cyclone. (B) Waterbuck temporarily 

replaced bushbuck as the predominant prey species in documented wild dog kills in the three months after the 

cyclone. This shift was associated with significant overall differences in wild dog diets before versus 

immediately after the cyclone, as quantified via DNA-metabarcoding and illustrated by (C) NMDS ordination 

of Bray Curtis compositional dissimilarity among diet samples collected before and after the cyclone, and (D) 

relative read abundances (RRA) of prey species in wild dog diets.   
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Figure B.21. Flood depths measured a field-deployed sensor array overlaid on a satellite-derived map of 

water extent before (purple) and after (yellow) Cyclone Idai made landfall on 15 March 2019. Flood 

sensors were more sensitive to shallow water than remotely sensed data but covered only a fraction of the study 

area. Therefore, we used satellite-derived maps of the flood waters, which were available at the same extent as 

the full study area, to quantify the extent of the flood before (purple) and after (yellow) Idai made landfall and 

to assess avoidance of the flood edge by GPS-collared mammals.  
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Figure B.22. Principal component analysis of 11 nutritional condition metrics collected from adult 

Tragelaphus spp. antelopes (n = 136) from 2014-2019 in Gorongosa. Nutritional condition metrics were 
collected at the time of capture. Together, Principal Component 1 (PC1) and Principal Component 2 (PC2) 

explained 80% of the variance in these data. Black arrows show projections of the original variables, and each 

grey number represents an individual antelope, the position of which reflects the individual’s score based on the 

first two principal components. Nutritional condition metrics associated with body size (i.e., body length, 

‘Body_length’; hind foot length, ‘Hind_foot’; chest girth, ‘Chest_girth’; the thickness of biceps femoris, 

‘B_femoris’, and longissimus dorsi, ‘L_dorsi’, muscles) loaded most strongly onto PC1, whereas metrics 

associated with body fat (i.e., maximum rump fat depth, ‘Max_fat’; and palpation scores at the sacrosciatic 

ligament, ‘SS_ligament’; lumbar vertebrae, ‘Lumbar_vert’; sacrum, ‘Sacrum’; base of tail, ‘Base_tail’; and 

caudal vertebrae, ‘Caudal_vert’) loaded most strongly onto to PC2. Accordingly, we used the inverse of PC2 as 

an index of nutritional condition of antelope in this study. 
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Appendix C: Supplemental materials for, “Chapter 3: Competition 

mediates fitness costs of heat sensitivity in a tropical carnivore” 

 

Supplemental Tables 

Table C.1. Values and sources for key environmental parameters included in the microclimate sub-model 

of Niche Mapper. 

Parameter Source Value 

Configuration factors Warren Porter, personal communications Between animal and sky = 
0.5; between animal and 

ground = 0.3 

Soil thermal conductivity Abu-hamdeh & Reeder (2000)  0.35 W/moC 

Substrate reflectivity Markvart and Castañer (2003)  16% 

Substrate density Sharma (1997)  2650 kg/m3 

Substrate specific heat Ren et al. (2003)  837 J/ kgK 

Substrate longwave 

infrared emissions 
 

Sellers (1965) 90% 

Percent shade  100% 

Cloud cover Wilson & Jetz 2016 3.4 – 85.7% 

Air Temperature 
 

Zhang et al. 2022 -4.9 – 42.5oC 

Elevation Amatulli et al. 2018 922-960 m 

Wind speed Fick & Hijmans 2017 0 – 3.5 ms-1 
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Table C.2. Values and sources for key physiological and morphological parameters included in the 

endothermic sub-model of Niche Mapper for African wild dogs.  

Parameter Source Value 

Body mass –
nonreproductive, 

lactating  
 

Mid-range weight of African wild dogs (Estes 1990, Gorman et al 

1998)  

 

25 kg 

Body mass –

pregnant 

Midpoint of measured 15-25% increase in body weight in the last 

month of pregnancy for domestic dogs (Fontaine 2012)  

 

30 kg 

Height  Height at shoulder reported for 28-kg African wild dog by 

Smithers (1983) 

75 cm 

Percent body fat Mean fat mass of free ranging grey wolves across individuals and 

seasons in Nelchina Basin, Alaska (Hilderbrand & Golden 2013) 

8.5 % 

Target core body 

temperature 

Resting steady state value reported for African wild dogs in 

Taylor et al (1971) 

38°C 

Maximum core 

body temperature 

Two degree increase in core temperature reported after exercise 

in African wild dogs by Taylor et al (1971)  
40°C 

Basal metabolic 

rate (BMR) 

 

Resting metabolic rate from allometric equation for 25 kg 

domestic dog (Gorman et al 1998, Walters et al. 1993). Same 
equation produces rate within 3% of single empirical value for 

9.5 kg African wild dog (Taylor et al 1971, Gorman et al 1998). 

60.4 W 

BMR multiplier 

for activity 

Measured from doubly labeled water trials for African wild dogs 

(Gorman 1998) 
5.2 

BMR multiplier 

for reproduction 

– pregnancy  

Midpoint of measured 1.25-1.5-fold increase in maintenance 

energy requirements after 40th day of gestation in domestic dogs 

(Fontaine 2012) 

0.375 

BMR multiplier 

for reproduction 

– lactation  

Midpoint of measured 2.5-3-fold increase in maintenance energy 

requirements during the third and fourth weeks post-partum in 

domestic dogs (Fontaine 2012) 

1.75 

Hair diameter  Measured value for African wild dog (Wiley 2012)  70 μm 

Hair reflectivity 

(350–2,500 nm)  

Measured value (integrated across wavelengths) on sandy-

colored hair by Warren Porter in 2021.  

0.17 

Hair density  Measured from adult female African wild dog in study area 

population in July 2021.  

100 cm-2 

Torso fur length 

(dorsal, ventral)  

Measured from adult female African wild dog in study area 

population in July 2021.  

24.0, 10.0 

mm 
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Torso fur depth 

(dorsal, ventral)  

Measured from adult female African wild dog in study area 

population in July 2021.  

16.4, 2.0 

mm 

Head/Neck fur 

length (dorsal, 

ventral) 

Measured from adult female African wild dog in study area 

population in July 2021.  

22.5, 50.0 

mm 

Head/Neck fur 

depth (dorsal, 

ventral) 

Measured from adult female African wild dog in study area 

population in July 2021.  

11.1, 39.9 

mm 

Legs fur length 

(dorsal, ventral) 

Measured from adult female African wild dog in study area 

population in July 2021.  

10.0, 11.0 

mm 

Legs fur depth 

(dorsal, ventral) 

Measured from adult female African wild dog in study area 

population in July 2021.  

1.0, 1.5 

mm 

Tail fur length 

(dorsal, ventral) 

Measured from adult female African wild dog in study area 

population in July 2021.  

30.0, 30.0 

mm 

Tail fur depth 

(dorsal, ventral) 

Measured from adult female African wild dog in study area 

population in July 2021.  

8.6, 8.6 

mm 

Temperature 

difference 

between inspired 

and expired air 

Mean across six mongrel dogs in a warm, dry climate (Baile et al. 

1987).  
10°C 

Minimum 

temperature 

difference from 

core to periphery 

Measured difference between central body and extremity skin 

temperature in domestic dog at start of challenge trial (Peterson 

& Seagrave 1983) 

1°C 

Oxygen 
extraction 

efficiency 

maximum 

Measured in mongrel dogs at atmospheric oxygen levels (Cain & 

Chapler 1979) 

 

30% 

Thermal 
conductivity of 

flesh 

Mean of measured values for canine kidney, liver, and heart 

muscle (Valvano et al. 1985, 1987) 

 

0.498 
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Table C.3. Range of parameter values and associated sources used in a sensitivity analysis of evaporative 

water loss predictions from Niche Mapper for African wild dogs at a representative location (23.78253, -

19.17917) in our study area. 

 

 

 

 

 

 

 

  Minimum Maximum Reference 

Torso fur depth (mm) 

dorsal, ventral  

 

13.9, 1.7 18.9, 2.3 ± 15% of measured value from adult 

female in study population 

Torso fur length (mm)  

dorsal, ventral 

20.4, 8.5 27.6, 11.5 ± 15% of measured value from adult 

female in study population 

Torso hair diameter (μm) 59.5 80.5 ± 15% of value reported in Wiley (2022) 

Torso hair density (cm-2) 85 115 ± 15% of measured value from adult 

female in study population 

Temperature difference,  

inspired and expired air (°C) 

7.3 12.7 Range of values for mongrel dogs in a 

warm, dry climate (Bailey et al. 1987) 

Temperature difference,  

core to skin (°C) 

0.5 3.0 Range of values in domestic dogs 

(Peterson & Seagrave 1983) 

Maximum core body  

temperature (°C) 

38.5 42.5 Range of values from no heat storage to 

dangerous hyperthermic temperature 

(Olfosky et al. 1996) 

 

Body mass (kg) 20 30 Range of weights in African wild dog 

species description (Estes 1990) 

Body fat (%)  3.3 15.9 Range of fat mass in free-ranging 

wolves (Hilderbrand & Golden 2013) 
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Table C.4. Pack characteristics, GPS collar data availability, and number of dens used for each litter. We 

included a total of 25 litters from 16 packs in our analyses. Due to differences in sampling regimes during the 

study (2012-2016), not all litters had a pack member equipped with a GPS collar in all phases of the pup rearing 

cycle. Litter is a unique identifier for each litter, ordered alphanumerically by pack code and year; Pack code is 

a unique identifier for a wild dog pack; Year is the year in which the litter was born; Pack size denotes the 

number of wild dogs > 1 year of age in each pack-year, which can change significantly among years for the 

same pack due to yearling recruitment and/or dispersal events; Pregnancy movement is a binary variable 

indicating whether (yes, Y) or not (no, N) GPS data were available during the pregnancy phase of the pup 

rearing cycle for the given pack-year; Lactation movement is a binary variable indicating whether (yes, Y) or 

not (no, N) GPS data were available during the lactation phase of the pup rearing cycle for the given pack-year; 

Dens used denotes the number of dens used to rear pups during the lactation phase in each pack-year.  

Litter Pack code Year 
Pack size 

(N) 

Pregnancy 

movement? 

Lactation 

movement? 

Dens used 

(N) 

1 AP 2014 12 Y Y 4 

2 AP 2015 8 Y Y 2 

3 AP 2016 8 N N 4 

4 DB 2014 12 N Y 2 

5 DB 2015 6 Y Y 3 

6 FV 2014 9 N Y 4 

7 HT 2014 10 Y Y 5 

8 HT 2015 11 Y Y 6 

9 HT 2016 4 Y Y 3 

10 HW 2012 7 Y Y 3 

11 HU 2015 9 N Y 2 

12 KB 2012 6 Y Y 3 

13 KW 2014 8 N Y 4 

14 MB 2014 11 N Y 7 

15 MB 2015 14 Y Y 6 

16 MB 2016 6 N N 2 

17 MK 2012 4 Y Y 3 

18 MT 2012 11 N N 4 

19 MU 2016 9 N N 3 

20 PA 2016 6 N N 2 

21 RV 2015 3 N N 1 

22 SA 2012 2 Y Y 2 

23 ZU 2014 10 Y Y 3 

24 ZU 2015 4 N N 1 

25 ZU 2016 10 N N 2 
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Supplemental Figures 

 

Figure C.1. Predicted metabolic rates (Watts) from Niche Mapper for nonreproductive (25 kg), pregnant 

(30 kg), and lactating (25 kg) African wild dogs (Lycaon pictus) as a function of air temperature and thermal 

radiation. Metabolic rates were estimated by running the endotherm sub-model for each demographic in a 

‘metabolic chamber’ simulation. The simulation assumed no heat input from solar radiation and that all 

microclimatic variables remained constant (relative humidity = 5%, wind speed = 0.1 m/s) except air and radiant 

temperature, which were simultaneously increased from -40 to 40°C in 1°C increments. The thermal neutral zone 

is the range of temperatures within which the predicted metabolic rate remains within 5% of the target metabolic 

rate while the individual is standing to facilitate heat loss (red lines) or laying in a flat or curled posture to facilitate 

heat retention (blue lines). Air temperatures at which the predicted metabolic rate no longer remains within 5% 

of the basal rate represent the upper and lower critical temperatures under those conditions (noted on each plot 

with annotated vertical lines). The simulated upper critical temperature (UTC) for the nonreproductive individual 

aligns well with the lone empirical estimate from metabolic chamber experiments on a non-reproductive, 8.5-kg 
African wild dog (between 30-35°C; Fig. 2 in Taylor et al. 1971), and the lower critical temperature (LCT) aligns 

with measurements on cold-acclimated dingos (10°C; Sheild 1972; LCT not available in the literature for wild 

dogs).
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Figure C.2. Relationships between variation in key parameters included in Niche Mapper and predicted evaporative water loss (EWL; g hr-1) for a 

nonreproductive African wild dog resting in the shade. The microclimate sub-model for this sensitivity analysis was parameterized with values from a 

randomly selected location (23.78253, -19.17917) in our study area, and results represent EWL predicted (A) at midnight during the coldest week (July 18-24) 

and (B) at midday during the hottest week (January 1-7) of a typical year (Fick et al. 2017). Each point represents one random sample (n = 1,000) from a Latin 
hypercube design (Wang et al. 2018); trend lines (blue) and p-values are from simple linear regression models (α = 0.10). Model parameters evaluated were (a) 

torso fur depth (mm), (b) torso fur length (mm), (c) torso hair diameter (μm), (d) torso fur density (hairs per cm2), (e) temperature difference between inspired 

and expired air (°C), (f) temperature difference between core and skin (°C), (g) maximum core body temperature (°C), (h) body mass (kg), (i) body fat (%); see 

Table C.3. (A) At cold temperatures, EWL results from Niche Mapper are most sensitive to variation in fur parameters, difference between inspired and expired 

air, and mass. (B) At hot temperatures, EWL results from Niche Mapper are most sensitive to variation in fur depth and diameter, difference between inspired 

and expired air, and mass. 
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Figure C.3. Relationships between variation in key parameters included in Niche Mapper and predicted evaporative water loss (EWL; g hr-1) for a 

pregnant African wild dog resting in the shade. The microclimate sub-model for this sensitivity analysis was parameterized with values from a randomly 

selected location (23.78253, -19.17917) in our study area, and results represent EWL predicted (A) at midnight during the coldest week (July 18-24) and (B) at 

midday during the hottest week (January 1-7) of a typical year (Fick et al. 2017). Each point represents one random sample (n = 1,000) from a Latin hypercube 

design (Wang et al. 2018); trend lines (blue) and p-values are from simple linear regression models (α = 0.10). Model parameters evaluated were (a) torso fur 

depth (mm), (b) torso fur length (mm), (c) torso hair diameter (μm), (d) torso fur density (hairs per cm2), (e) temperature difference between inspired and expired 
air (°C), (f) temperature difference between core and skin (°C), (g) maximum core body temperature (°C), (h) body mass (kg), (i) body fat (%); see Table C.3. 

(A) At cold temperatures, EWL results from Niche Mapper are most sensitive to variation in fur parameters and mass. (B) At hot temperatures, EWL results from 

Niche Mapper are most sensitive to the maximum core temperature and mass. 



 

 

 

 

1
5
9
 

 

Figure C.4. Relationships between variation in key parameters included in Niche Mapper and predicted evaporative water loss (EWL; g hr-1) for a 

lactating African wild dog resting in the shade. The microclimate sub-model for this analysis was parameterized with values from a randomly selected location 

(23.78253, -19.17917) in our study area, and results represent EWL predicted (A) at midnight during the coldest week (July 18-24) and (B) at midday during the 

hottest week (January 1-7) of a typical year (Fick et al. 2017). Each point represents one random sample (n = 1,000) from a Latin hypercube design (Wang et al. 

2018); trend lines (blue) and p-values are from simple linear regression models (α = 0.10). Model parameters evaluated were (a) torso fur depth (mm), (b) torso 

fur length (mm), (c) torso hair diameter (μm), (d) torso fur density (hairs per cm2), (e) temperature difference between inspired and expired air (°C), (f) 
temperature difference between core and skin (°C), (g) maximum core body temperature (°C), (h) body mass (kg), (i) body fat (%); see Table C.3. (A) At cold 

temperatures, EWL results from Niche Mapper are most sensitive to variation in fur parameters, mass, and body fat. (B) At hot temperatures, EWL results from 

Niche Mapper are most sensitive to fur length and depth, maximum core temperature, mass, and fat.  
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Figure C.5. Relationships among litter size, pack size, and strength of selection for the energy landscape 

(evaporative water loss, EWL, L/D) within home ranges during the pregnancy phase of the pup rearing 

cycle. We estimated within-home-range (3rd order, Johnson 1980) resource selection functions for each pack-

year (N = 12) that negative coefficients indicate selection for lower-cost areas and positive coefficients indicate 

the opposite. Home ranges were estimated via 99% kernel density isopleths of hourly GPS data collected for 

each pack-year during the pregnancy phase of the pup rearing cycle using the amt package in R (Signer et al. 

2019).We quantified within-home-range availability by extracting attribute data to random points [10x 

observed, generated with the spsample() function in the sp package in R (Pebsma and Bivand 2005)] distributed 

throughout each pack-year home range. We evaluated wild dogs’ selection for the energy landscape by fitting 

separate generalized linear mixed models with a binomial error distribution and logit link function. We included 

a random intercept for each week so that use and availability were compared at the appropriate time scale and 

marginal coefficients represented each pack-year’s relative selection for low-cost areas within their home range 
averaged across weeks. (A) We evaluated the impact of 3rd-order selection for the energy landscape on litter 

size by fitting a mixed-effects model that included marginal coefficients from the resource selection function as 

the predictor variable and the number of pups emerging from the den as the response, with a Poisson-error 

distribution and per-pack random intercepts (βSelection = -0.45, SE = 0.86, P = 0.60). (B) To evaluate whether 

larger packs were more selective for lower-cost habitats within their home ranges, we used pack size as the 

predictor and selection for the energy landscape (coefficients from the RSF) as the response in a mixed effects 

model with a Gaussian-error distribution and per-pack random intercepts (βPack size = 0.0008, SE = 0.009, P = 

0.93).   
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Figure C.6. Relationships among litter size, pack size, and strength of selection for the energy landscape 

(evaporative water loss, L/D) across the study area during the pregnancy phase of the pup rearing cycle. 

We estimated landscape-scale (2nd order, Johnson 1980) resource selection functions for each pack-year (N = 

12) that negative coefficients indicate selection for lower-cost areas across our study area and positive 
coefficients indicate the opposite. Our study areas was bounded by the 99% kernel density isopleths of hourly 

GPS data collected across all pack-years during the pregnancy phase of the pup rearing cycle using the amt 

package in R (Signer et al. 2019). We quantified availability by extracting attribute data to random points [10x 

observed, generated with the spsample() function in the sp package in R (Pebsma and Bivand 2005)] distributed 

throughout within our study area. We evaluated wild dogs’ selection for the energy landscape by fitting 

generalized linear mixed models with a binomial error distribution and logit link function to the scaled attribute 

data from used (GPS locations from African wild dogs) and random locations. Our interest was in the 

conditional, or pack-year-level, parameter estimates generated by including a random intercept and uncorrelated 

random slope for energy costs (grouped by pack-year nested within week so that use and availability were 

compared at the appropriate time scale) (sensu Long et al. 2016). The conditional slopes represented each pack-

year’s strength of selection for low-cost habitats (indicated by negative values; selection for high-cost areas 
indicated by positive values) relative to the population mean. (A) We used conditional slopes from the fitted 

RSF as the predictor variable to evaluate the influence of selection for the energy landscape during pregnancy 

on litter size (mixed effects model with Poisson-error distribution and per-pack random intercepts: βSelection = -

0.55, SE = 0.52, P = 0.29). (B) To evaluate whether larger packs were more selective for the energy landscape, 

we used the conditional slopes as the response and pack size as the predictor in a mixed effects model with a 

Gaussian error distribution and per-pack random intercepts (βPack size = -0.007, SE = 0.01, P = 0.48).  
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Figure C.7. Use of high risk/reward habitats by pregnant African wild dogs (N = 12) did not impact 

fecundity, scale with pack size, or predict mean energetic costs imposed by the environment. Recent work 

in our study area identified mixed woodland and dry grassland habitats as the preferred habitat of both impala 

(preferred wild dog prey) and lion (primary intraguild predator) and showed that wild dogs prefer to hunt in 

those high risk/reward habitats (Alting et al. 2021). (A) Contrary to the prediction that use of habitats preferred 

by prey should increase nutritional resources available to support reproduction, and should thus improve 
reproductive success, proportional use of high risk/reward habitats did not significantly impact litter size (mixed 

effects model with Poisson-error distribution and per-pack random slopes: βHabitat use = -0.82, SE = 0.68, P = 

0.23). (B) We also find that more dominant, larger packs did not use high risk/reward habitats more than 

smaller packs (mixed effects model with beta-error distribution and per-pack random slopes: βPack size = -0.02, SE 

= 0.03, P = 0.44). (C) There was no correlation between use of high risk/reward habitats and predicted costs of 

thermoregulation (i.e., evaporative water loss, L/D) incurred by pregnant wild dogs (mixed effects model with 

Gaussian-error distribution and per-pack random slopes: βHabitat use = 0.006, SE = 0.007, P = 0.33).  
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Figure C.8. Use of high risk/reward habitats by nonreproductive African wild dogs (N = 17) during the 

lactation phase of the pup rearing cycle did not impact survivorship, scale with pack size, or predict 

mean energetic costs imposed by the environment. Recent work in our study area identified mixed woodland 

and dry grassland habitats as the preferred habitat of both impala (preferred wild dog prey) and lion (primary 

intraguild predation) and show that wild dog prefer to hunt in those high risk/reward habitats (Alting et al. 

2021). During the lactation/denning phase of the pup rearing cycle, non-reproductive dogs hunt and provision 

the lactating female, who typically remains at the den site with the pups. (A) Contrary to the prediction that 

packs that use prey preferred habitats increase nutritional resources available to support reproduction, and 

should thus improve reproductive success, proportional use of these high risk/reward habitats did not 

significantly impact pup survivorship to weaning (mixed effects model with beta-error distribution and per-pack 

random slopes: βHabitat use = -0.53, SE = 3.9, P = 0.89). (B) We additionally find that dominant, larger packs did 

not use high risk/reward habitats more than smaller packs (mixed effects model with beta-error distribution and 

per-pack random slopes: βPack size = -0.0003, SE = 0.04, P = 0.99). (C) There was no correlation between these 
habitats and modeled energetic costs of thermoregulation (i.e., evaporative water loss, L/D) for non-

reproductive wild dogs (mixed effects model with Gaussian-error distribution and per-pack random slopes: 

βHabitat use = -0.008, SE = 0.008, P = 0.31). 

  



164 

 

 

 

Literature Cited 

Abu-hamdeh, N. H., and  R. C. Reeder. 2000. Soil thermal conductivity: Effects of density, moisture, 

salt concentration, and organic matter. Soil Science Society of America 64:1285-1290. 

Amatulli, G., S. Domisch, M.N. Tuanmu, B. Parmentier, A. Ranipeta, J. Malczyk, and W. Jetz. 2018. 

A suite of global, cross-scale topographic variables for environmental and biodiversity 

modeling. Scientific Data 5:180040.  

Baile, E.M., R.W. Dahlby, B.R. Wiggs, G.P. Parsons, and P.D. Pare. 1987. Effect of cold and warm 

dry air hyperventilation on canine airway blood flow. Journal of Applied Physiology 62:526-

532.   

Cain, S. and C. Chapler. 1979. Oxygen extraction by canine hindlimb during hypoxic hypoxia. 

Journal of Applied Physiology 46:1023-1028.  

Fick, S.E., and R.J. Hijmans. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for 

global land areas. International Journal of Climatology 10.1002/joc.5086.  

Fontaine, E. 2012. Food intake and nutrition during pregnancy, lactation and weaning in the dam and 

offspring. Reproduction in Domestic Animals 47:326-330.  

Gorman, M.L., M.G. Mills, J.P. Raath, and J.R. Speakman. 1998. High hunting costs make African 

wild dogs vulnerable to kleptoparasitism by hyaenas. Nature 391:478-481.  

Hilderbrand, G.V., and H.N. Golden. 2013. Body composition of free-ranging wolves (Canis lupis). 

Canadian Journal of Zoology 91:1-6.  

Hubel, T.Y., J.P. Myatt, N.R. Jordan, O.P. Dewhirst, J.W. McNutt, and A.M. Wilson. 2016. Energy 

cost and return for hunting in African wild dogs and cheetahs. Nature Communications 

7:11034.  

Johnson, D.H. 1980. The comparison of usage and availability measurements for evaluating resource 

preference. Ecology 61:65-71.  

Long, R.A., R.T. Bowyer, W.P. Porter, P. Mathewson, K.L. Monteith, S.L. Findholt, B.L. Dick, and 

J.G. Kie. 2016. Linking habitat selection to fitness-related traits in herbivores: the role of the 

energy landscape. Oecologia 181:709-720.  

Markvart, T., and L. Castañer. 2003. Practical Handbook of Photovoltaics: Fundamentals and 

Applications. Elsevier Press: Amsterdam, Netherlands.  

Pebesma E.J., and R.S. Bivand. 2005. Classes and methods for spatial data in R. R News 5:9–13.  



165 

 

 

 

Peterson, J.N. and R.C. Seagrave. 1983. Experimental and theoretical study of temperature regulation 

in the immersed dog. IEEE Transactions on Biomedical Engineering 30:590-600. 

Ren, T., T.E. Ochsner, R. Horton, and Z. Ju. 2003. Heat-pulse method for soil water content 

measurement: influence of the specific heat of the soil solids. Soil Science Society of America 

67:1631-1634. 

Sellers, W. D. 1965. Physical climatology. University of Chicago Press: Chicago, USA.  

Sharma, V. 1997. Environmental and Engineering Geophysics. Cambridge University Press: 

Cambridge, UK. 

Sheild, J. 1972. Acclimation and energy metabolism of the dingo, Canis dingo, and the coyote, Canis 

latrans. Journal of Zoology 168:483-501.  

Taylor, C.R. and N.H. Heglund. 1982. Energetics and mechanics of terrestrial locomotion. Annual 

Review of Physiology 44:97-107.  

Taylor, C.R., K. Schmidt-Nielsen, R. Dmi'el, and M. Fedak 1971. Effect of hyperthermia running 

during running in the African hunting dog. American Journal of Physiology 220:823-827. 

Valvano, J.W., J.R. Cochran, and K.R. Diller. 1985. Thermal conductivity and diffusivity of 

biomaterials measured with self-heated thermistors. International. Journal of 

Thermophysiological 6:301-311. 

Valvano, J.W. and B. Chitsabesan. 1987. Thermal conductivity and diffusivity of arterial wall and 

atherosclerotic plaque. Lasers Life Science 1:219-229. 

Walters, L.M., G.K. Ogilvie, M.D. Salman, L. Joy, M.J. Fettman, M.S. Hand, and S.L. Wheeler. 

1993. Repeatability of energy expenditure measurements in clinically normal dogs by use of 

indirect calorimetry. American Journal of Veterinarian Research 54:1881–1885. 

Wang, Y., W.P. Porter, P.D. Mathewson, P.A. Miller, R.W. Graham, and J.W. Williams. 2018. 

Mechanistic modeling of environmental drivers of woolly mammoth carrying capacity 

declines on St. Paul Island. Ecology 99: 2721-2730. 

Wiley, K.D. 'African wild dog (Lycaon pictus)'. A microscopical study of exotic animal hairs: Part 2. 

Materials Analysis: The McCrone Group. URL: https://www.mccrone.com/mm/a-

microscopical-study-of-exotic-animal-hairs-part-2/ 



166 

 

 

 

Wilson, A.M., and W. Jetz. 2016. Remotely sensed high-resolution global cloud dynamics for 

predicting ecosystem biodiversity distributions. PLoS Biology 14:e1002415.  

Winstanley, R.K., W.A. Buttemer, and G. Saunders. 1999. Fat deposition and seasonal variation in 

body composition of red foxes (Vulpes vulpes) in Australia. Canadian Journal of Zoology 

77:406-412. 

Zhang, T., Y. Zhou, K. Zhao, Z. Zhu, G. Chen, J. Hu, and L. Wang. 2022. A global dataset of daily 

maximum and minimum near-surface air temperature at 1 km resolution over land (2000-

2020). Earth Systems Science Data 14:5637-5649.  


