
Delayed Parturition Determined by Body Condition: A State-Dependent 
Life History Model for Elk 

A Thesis 

Presented in Partial Fulfillment of the Requirements for the 

Degree of Master of Science 

with a 

Major in Statistical Science 

in the 

College of Graduate Studies 

University of Idaho 

by 

Marc A. Wiseman 

Major Professor: Christopher H. Remien, Ph.D. 

Committee Members: Ryan A. Long, Ph.D., Benjamin Ridenhour, Ph.D.

Department Administrator: Hirotachi Abo, Ph.D.

December 2021  



ii 

Authorization to Submit Dissertation 

This dissertation of Marc A. Wiseman, submitted for the degree of Master of Science 

with a Major in Statistical Science and titled "Delayed Parturition Determined by Body 

Condition: A State-Dependent Life History Model for Elk" has been reviewed in final form. 

Permission, as indicated by the signatures and dates below, is now granted to submit final 

copies to the College of Graduate Studies for approval. 

Major Professor: _______ _____  Date:   8/10/21 
Christopher Remien, Ph.D. 

Committee Members:  ____________________________  Date:   8/10/21 
Ryan Long, Ph.D. 

_____________________________  Date:   8/10/21 
Benjamin Ridenhour, Ph.D. 

Department 
Administrator: _____________________________  Date:   8/12/21 

Hirotachi Abo, Ph.D. 



iii 

Abstract 

The long-lived iteroparous animals are known to favor their own survival over current 

reproduction.  Indeed, the tradeoff between future survival and investment in reproduction is 

central to life history theory. One means of managing this tradeoff involves the adjustment of 

reproductive investment post conception.  We modeled one such strategy, using a series of 

life stage-specific equations (both deterministic and stochastic) derived either from our own 

empirical data or from previously published data for elk, in which a simulated population of 

female elk adjust the parturition date of their calves based on their body condition.  We 

predicted that due to the reduced energetic costs of gestation relative to lactation, females 

would be able to enter winter in a better state and thus more likely to survive to attempt 

reproduction the following season.  In addition, calves would be born larger and thus better 

able to survive through the summer.  These two factors would lead to the simulated elk 

populations employing this state-dependent “bet-hedging” strategy to increase at a faster rate 

than populations for which timing of reproduction is independent of maternal condition.  Our 

result supported the prediction that elk simulated using the bet-hedging strategy would have a 

higher rate of population increase. However, this was driven mostly by female over-winter 

survival rates.  These results help provide a better understanding of the evolution of life-

history traits and how they affect population dynamics.
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Introduction 
 

The tradeoff between investment in current reproduction versus future survival (i.e., 

the ‘cost of reproduction’ tradeoff) is a central tenet of life-history theory (Stearns 1992, Roff 

1993), and long-lived iteroparous animals are well known for favoring their own survival over 

current reproductive investment (Gaillard et al. 2000, Ellison 2003, Brown and Sibly 2006, 

Therrien et al. 2008). Although reproductive failure in such animals sometimes manifests in 

the form of reproductive pauses (Williams 1966, Clutton-Brock et al. 1983, Stearns 1992, 

Bårdsen et al. 2010), an alternative strategy involves the adjustment of reproductive 

investment post conception. For example, in capital breeders (Jönsson 1997, Festa-Bianchet et 

al. 1998, Macdonald, et al. 2020) like North American elk (Cervus canadensis), conception 

occurs nearly every year, but prenatal, perinatal, or neonatal mortality can effectively 

eliminate most of the costs of reproduction at the ‘last minute’. This strategy is facilitated in 

mammals by the lower cost of gestation relative to lactation (Clutton-Brock et al. 1989); if a 

maternal female loses her offspring before having to bear the costs of lactation, then the bulk 

of that year’s resources can still be invested in somatic maintenance and growth rather than in 

reproduction. 

Bet-hedging strategies like the one described above are especially advantageous in 

temperate and arctic environments where maternal condition in autumn serves as a buffer 

against the energetic stresses of winter (Erikstad et al. 1998; Bårdsen et al. 2008, 2011). 

Owing to the differential costs of gestation versus lactation, such strategies allow females that 

conceive in autumn, when winter and spring conditions are still unknown, to effectively delay 

much of their investment in reproduction to a time when those conditions become known 

(Gaillard et al. 2000, Bårdsen et al. 2008, Milner et al. 2013). In capital-breeding species, 
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fetuses are often well-buffered against nutritional deficiencies of the dam from the beginning 

of the second trimester onward (Markgren 1969, Milner et al. 2013), which further helps to 

facilitate delayed investment in reproduction with low initial risk to offspring. Moreover, 

although maternal condition often is a predisposing factor for neonatal mortality (Skogland 

1984, Clutton-Brock et al. 1987, Keech et al. 2000, Tveraa et al. 2003, Hamel et al. 2010), 

birth mass of young is typically unrelated to maternal condition at or near parturition 

(Monteith et al. 2013, Long et al. 2016). This suggests that the predisposing factor is related 

to reduced investment in lactation rather than gestation. 

‘Conservative’ strategies of reproductive allocation typically involve reduced 

investment in reproduction at conception (e.g., reproductive pauses), gestation, or lactation 

(Descamps et al. 2016). Although the lower cost of gestation relative to lactation is an 

important part of what facilitates such strategies in the first place, under the right conditions 

this difference in the costs of reproduction may also facilitate another, arguably less intuitive, 

strategy. Those conditions, which are relatively common among capital-breeding ungulates, 

include: 

1. Females have the capacity to adjust gestation length (Clements et al. 2011). 

2. Neonatal mortality occurs largely during the first month of life (e.g., Barber-Meyer 

et al. 2010) and is inversely related to birth mass (Smith and Anderson 1996, Long 

et al. 2016). 

3. The influence of birth mass on the probability of surviving the first month of life is 

considerably stronger than the influence of autumn body mass on the probability 

of surviving the first winter of life (Clutton-Brock et al. 1987). 
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Under these circumstances, a female in poor nutritional condition could potentially increase 

their fitness by (1) delaying parturition and increasing investment in gestation, (2) giving birth 

to a correspondingly larger neonate that has a higher probability of survival during its first 

month of life, and (3) subsequently reducing investment in lactation to help rebuild somatic 

reserves. Over time, such a state-dependent bet-hedging strategy could potentially result in 

more young recruited while simultaneously maintaining a high annual probability of survival 

for the female. 

 We collected data from adult female elk and their offspring in a temperate montane 

forest from 2010–2012 as part of an unrelated study. Several relationships observed in those 

data, however, suggested the existence of state-dependent bet-hedging in the allocation of 

energy to reproduction. We lacked the sample size to facilitate a rigorous empirical test of this 

hypothesis, and thus opted instead to develop a series of stochastic simulation models 

parameterized with our and others’ data to evaluate the potential for state-dependent bet-

hedging to improve population performance. We used those models to test the following 

hypothesis: 

 H1: In capital-breeding ungulates like elk (Cervus canadensis), lifetime fitness can be 

 improved via a state-dependent bet-hedging strategy wherein females in poor 

 condition in early spring (1) increase birth mass of their calves by delaying 

 parturition and investing more in fetal growth during the last third of gestation, and (2) 

 reduce investment in lactation following parturition. 

Due to the lower cost of gestation relative to lactation, such a strategy could increase both the 

probability of neonatal survival during early life (which is strongly determined by birth mass) 

and the probability of dam survival (by facilitating greater allocation of energy to somatic 
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reserves during summer). Conversely, females in good condition in early spring should give 

birth sooner (on average) and invest more in lactation to foster rapid early growth of their 

neonates. We predicted that in the absence of other limiting factors, simulated elk populations 

employing this state-dependent bet-hedging strategy would increase at a faster rate than 

populations for which timing of reproduction is independent of maternal condition. 

 

Methods and Materials 
 
Study site 

 Empirical data used to initialize our models were obtained from a variety of sources 

(see description of model parameterization below). However, the data that had initially 

suggested the bet-hedging strategy were obtained at the Starkey Experimental Forest and 

Range (hereafter Starkey; 45.8130 N, 118.8310 W; Figure 1) between 2010 and 2012 (Long 

et al. 2014, 2016). Starkey is a 101-km2 research site situated in the Blue Mountains of 

northeastern Oregon, USA. Starkey is operated by the U.S. Forest Service and is surrounded 

by a 2.4-m high fence that prevents immigration or emigration of large herbivores (Rowland 

et al. 1997) but plays no role in habitat selection by elk (Stewart et al. 2002, 2006). The fence 

also divides Starkey into several distinct research areas; the study that generated our data was 

conducted in the largest of those which, at 78 km2 is several times larger than the average 

home range reported for elk in the Blue Mountains (Leckenby 1984). Starkey supports the 

highest density of elk in the state of Oregon (estimated between 4.2 and 7.6 elk/km2; Spitz et 

al. 2018, Merems et al. 2020), but the population is probably still below carrying capacity (K) 

based on consistently high pregnancy rates (Noyes et al. 1997), excellent nutritional 

condition, and large birth mass of young (Kie et al. 2003, Stewart et al. 2005; R. A. Long et 
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al., unpublished data). Traffic levels and recreational activities (e.g., hunting) are similar to 

patterns of use on nearby public lands (Rowland et al. 1997). Starkey is subject to a dry 

continental climate; mean maximum temperature recorded by the nearest weather station 

(maintained by the National Oceanic and Atmospheric Administration; elevation 1102 m) is 

13.98°C during spring (April–June), the period when data used in our study were collected 

(Western Regional Climate Center). Mean total precipitation in spring is 18.4 cm (Western 

Regional Climate Center). Elevations range from 1120 to 1500 m, and common plant 

communities included bunchgrasses (Festuca idahoensis, Poa secunda, Pseudoroegneria 

spicata), ponderosa pine (Pinus ponderosa), Douglas-fir (Pseudotsuga menziesii), grand fir 

(Abies grandis), and lodgepole pine (Pinus contorta; Long et al. 2008). Primary predators at 

Starkey are mountain lions (Puma concolor), black bears (Ursus americanus), and coyotes 

(Canis latrans). 

 During early spring of 2010-2012, 36 adult female elk were captured and fit with GPS 

collars following methods described by Wisdom et al. (1993) and Long et al. (2014, 2016). 

Nutritional condition was measured at the time of capture using standard protocols developed 

for elk, which included measuring maximum depth of rump fat via ultrasonography and 

assigning a condition score to those animals that had catabolized subcutaneous fat reserves 

(Cook et al. 2010). Those data were combined with data on body mass to estimate percent 

ingesta-free body fat (IFBF) for each individual as an overall measure of nutritional condition 

(Cook et al. 2010). 

 Pregnancy was also assessed at the time of capture, and pregnant females were fit with 

a vaginal implant transmitter (VIT) to monitor timing and location of parturition.  Each VIT 

transmitted a temperature-modulated pulse on a unique frequency that indicated the timing of 



 
 

6 

expulsion and, ostensibly, parturition. VITs were monitored daily throughout the birthing 

season (May–June) via ground-based radiotelemetry. When a birthing event was suspected 

based on expulsion of a VIT the dam was located by radiotelemetry. If a calf was not seen in 

the vicinity of the dam then a search was conducted in the immediate area (≤100-m radius). 

Captured neonates were blindfolded and sex, age and size-related data were collected.  Age 

was estimated to the nearest hour of VIT expulsion or, if expulsion time was not available, 

morphology and stage of development was compared to known-age neonates. Calves were 

fitted with ear tags and expandable radio collars that included mortality sensors and were 

monitored daily through August. When a mortality signal was detected, the collar was 

located, and verification of mortality was attempted. If no evidence of mortality was found, 

the collar was assumed to have been slipped and the calf and dam were censored from 

subsequent analysis. Of the original 36 calves collared, 11 were recaptured in the fall (1 in 

2010 and 10 in 2012) during early winter elk handling at Starkey (Wisdom et al. 1993); calf 

body mass and nutritional condition of the associated dams were measured again at that time. 

 

Models 

We evaluated two competing models of maternal investment. The first model 

represented our hypothesized bet-hedging strategy, in which timing of parturition was 

adjusted as a function of dam condition in spring (Fig. 2). The second model was a null model 

in which calf birth date was decoupled from dam body condition (Fig. 3). Both models 

consisted of a series of life stage-specific equations (both deterministic and stochastic) that 

linked hypothesized patterns of energy transfer and investment to patterns of demographic 

vital rates. Specifically, the models were individual based, and the energy transfer 
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relationships were derived either from our own empirical data or from previously published 

data for elk (Tables 1 and 2). We initialized our models by randomly generating spring body 

condition values (% ingesta-free body fat) for 100 pregnant female elk from an empirical 

distribution derived from data collected at our study site (see Simulations). Model equations 

then linked this initial distribution of dam condition values to timing of parturition, birth mass 

of young, and maternal investment in gestation and lactation according to each respective 

strategy (i.e., null vs. bet-hedging). We tracked condition and survival of all modeled 

individuals until they either died or the model run ended. Each run consisted of 30 breeding 

seasons (years). Adult elk that survived through the following winter attempted to reproduce 

again; calves that survived the winter transitioned to the yearling stage, and yearlings that 

survived became adults. 

 

Bet-hedging model 

In the bet-hedging model (Fig. 2), initial condition of the dam determined the date of 

parturition, with cows in poorer condition giving birth later and investing concomitantly more 

energy in gestation (equations 1 and 4, Table 1). Calves born later were also larger (equation 

2, Table 1) and were more likely to survive their first month of life (equations 3 and 12, Table 

1). In contrast to gestation, date of birth was negatively related to investment in lactation 

(equation 5, Table 1), allowing cows that started the simulation in poor condition to accrue 

somatic energy reserves more rapidly during summer. Investment in lactation, however, was 

positively related to calf growth rate over summer (equation 6, Table 1), thereby influencing 

calf body mass at the onset of winter (equation 7, Table 1). Early-winter body mass of calves 

was positively related to overwinter survival probability (equation 8, Table 1). Notably, 
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however, the strength of this empirically derived relationship was weaker than the relationship 

between birth mass and survival probability during the first month of life; this was a key 

component of the bet-hedging strategy. Because calf growth rates during summer were driven 

by maternal investment in lactation, they were negatively related to dam condition at the onset 

of winter (equations 9 and 10, Table 1). Dams in better condition in early winter had a higher 

overwinter survival probability (equation 11, Table 1). Both adults and calves that survived 

through winter contributed to reproductive performance and associated population growth in 

the following year (equations 13a and 13b, Table 1). 

 

Null model 

The primary difference between the null (Fig. 3) and the bet-hedging model was the 

decoupling of dam body condition from calf birth date in the null model. Accordingly, both 

dam condition and calf birth mass were generated from empirical distributions derived from 

field data collected at our study site (see Simulations). Because dams in the null model were 

not modulating timing of parturition (and thus calf birth mass and cost of gestation) based on 

spring body condition, energy devoted to lactation was determined by post-parturition body 

condition of the dam (equation 4, Table 2). Post-parturition condition of the dam was 

determined by subtracting energy devoted to gestation from spring body condition using a 

37,000 kJ/kg of calf mass conversion (equation 3, Table 2). Calf mass in kg was divided by 

the mass of the cow (drawn from a normal distribution fit to empirical data from Starkey) to 

determine %IFBF lost due to investment in gestation, which was then subtracted from spring 

condition to determine post-parturition condition of the dam. Dams in better condition post 

parturition devoted more energy to lactation (equation 4, Table 2), thereby increasing calf 
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growth rate during the summer (equation 5, Table 2). Faster growth rates resulted in larger 

body mass of calves at the onset of winter (equation 6, Table 2), increasing the probability of 

overwinter survival (equation 7, Table 2). Faster calf growth rates also reduced condition of 

the dam at the onset of winter (equations 8 and 9, Table 2), resulting in lower overwinter 

survival probability of the dam (equation 10, Table 2). As in the bet-hedging model, adults 

and calves that survived winter contributed to population productivity in the following year 

(equations 12a and 12b, Table 2). 

 

Simulations 

We used the R programming language (R Core Team, 2021, Version 4.1.0) to run the 

simulations for both models. We began each simulation with a starting population of 100 two-

year-old female elk and ran the model for 30 calving seasons. At the beginning of each 

season, including the initial one, we assigned each cow a body condition value using a 

Weibull distribution (k = 3.87, λ=6.15) which was determined by fits to the Starkey data using 

the fitdist function from the fitdistrplus package (Delignette-Muller and Dutang 2015). Adult 

female elk were assigned an 85% probability of pregnancy each season, while yearlings were 

given a 10% probability, each with an equal probability of giving birth to a male or female 

calf (Long et al. 2014, 2016). 

We tracked the fate of each individual elk throughout each 30-year model run (Fig. 4, 

5 and 6), along with age, sex, age category (i.e., yearling or adult), energy devoted to 

lactation, and body condition in both the spring and early winter. Calf survival (through early 

summer and through winter), sex, date of birth, birth weight, growth rate, and early winter 

weight were tracked in association with each dam. Calves that survived the winter 
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transitioned to the yearling stage class, and yearlings that survived the winter became adults. 

To simulate the effect of hunting on adult male mortality we used harvest data from Western 

Oregon compiled by Biederbeck et al. (2001). Male mortality from harvest was independent 

of overwinter mortality, and harvested males were removed from the population prior to the 

onset of winter. Other mortalities were subtracted from the population during the year in 

which they occurred, and overall annual mortality was tracked each year. 

At the population level, the number of adult and yearling females and males, and the 

number of calves, were recorded each year. Mortality rates for each group were likewise 

recorded. In addition, the mean and variance of age, calf mass (birth and early winter), 

survival of each group (by sex and age category), adult body condition (spring and early 

winter), and winter severity were tracked annually. Lambda was recorded for each season and 

average lambda was recorded for each iteration. Summary statistics for all variables were 

recorded at the end of each 30-year iteration, and we ran 1,000 iterations of each model for 

each of 10 levels of winter severity (see below). 

 

Winter severity 

To simulate interannual variation in winter severity we used a modified version of 

Farnes’ Index of Winter Severity (Farnes1996). We used SNOTEL data collected at Bowman 

Springs (a weather station located near Starkey with similar climate and topography) from 

December 1st through April 15th, 2006–2020. A ‘severe’ winter day was defined as a day in 

which the minimum temperature was below -18 °C, when additional food intake is needed to 

compensate for increased metabolic demands (Farnes 1991), and/or when snow depth was 

≥46 cm, which greatly impedes the ability to forage and move about the landscape. 
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Using the fitdistrplus package (Delignette-Muller and Dutang, 2015) in R, we found that a 

beta distribution with a = 3 and b = 2.5 best described the likelihood that a day would have 

severe conditions. Therefore, in each simulation we sampled randomly from this distribution 

and multiplied the resulting probability by the number of days of winter from (136 days from 

December 1st through mid-April 15th) to calculate the total number of severe days experienced 

by elk in each winter season. To simulate winters that were milder or more severe than those 

estimated from the SNOTEL data approximated interannual variation in weather patterns by 

altering a  and b by increments of 0.25 in opposite directions.  In doing so we altered the 

weight of the distribution so that the skew moves from left to right with each regime. Table 3 

shows the average number of severe winter days resulting from each change in parameters. 

The number of severe winter days then influenced whether or not calves survived through the 

winter (Table 1, equation 8 for the bet-hedge model and Table 2, equation 7 for the null 

model). We stored the results for each winter weather regime separately. 

 

Stochasticity 

 To better reflect natural variation in the drivers of ungulate population dynamics we 

incorporated stochasticity into each of the two models. We accomplished this by selecting 

parameters for several key equations in each model (equations 1, 2, 6 and 7 in the bet-hedging 

model and equations 4, 5, and 6 in the null model) from corresponding prediction intervals in 

each model iteration using the predict and simulate functions in base R (Fig 5). We integrated 

stochasticity into these equations to capture the high level of variability in the empirical data 

from Starkey. We sampled from the 95% predication interval of the linear equation to obtain 
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the output. We did so because of the associated uncertainty associated with a predicted 

unknown future variable. 

 

Data analysis 

 We compared the effects of each maternal investment strategy (i.e., the null and bet-

hedging models) on population performance by using paired t-tests to test for differences in 

lambda, final population size, survival (calf and adult), calf body mass (birth and early 

winter), average age, and adult body condition (spring and early winter) between the two 

models. Cohen’s d was used to calculate the effect size of the differences between the bet-

hedging and null models using R package effsize (Torchiano, 2020). 

 

Results 
 
Population dynamics 

 For winter conditions recorded at Starkey during the time of data collection (i.e., 

‘standard winter conditions’, regime #7, Table 3), the finite rate of population growth 

(lambda) was significantly greater under the bet-hedging model (mean lambda = 1.14; Table 

4) than under the null model (mean lambda = 1.11; Table 6). Moreover, the effect size was 

large (Cohen’s d = 1.11; Table 8) across all winter severity regimes (Fig. 8a). As winters 

became more severe, the mean value of lambda declined under both models and the difference 

between the bet-hedging and null models increased, whereas the effect size decreased (Fig. 

8a, Table 8). Mean population size at year 30 assuming standard winter conditions was 

likewise significantly higher under the bet-hedging model (3,909 ± 147 animals; Table 4) than 

under the null model (2,189 ± 79 animals; Table 6), and the effect size was again large 
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(Cohen’s d = 0.90, Table 8). As winter severity increased the difference between the two 

models and the effect size decreased (Tables 8, Fig. 8b). The two models of maternal 

investment also led to different age structures after 30 years of population growth. Mean age 

of adult females in year 30 was significantly higher under the null model (6.21 ± 0.39 years; 

Table 6) than under the bet-hedging model (5.87 ± 0.37 years; Table 4) for the standard 

winter regime, and this difference increased as winters became more severe (Table 8, Fig. 8c). 

The effect size remained small for all 10 winter regimes (Cohen’s d=0.21 for the standard 

winter regime; Table 8). 

 

Adult survival and body condition 

 Female survival was higher (Cohen’s d = 4.81, Table 9) for the bet-hedging 

(0.96±0.0006, Table 4) model than for the null model (0.95±0.0006, Table 6) under the 

standard winter regime. Female survival decreased, as did the effect size, under both models 

as winters became more severe (Table 9, Fig. 9a), but the difference in survival between 

models remained fairly constant. Male survival was equivalent between the bet-hedging 

(0.71±0.009; Table 4) and null models (0.71±0.008; Table 6) (Cohen’s d = 0.16; Table 9) for 

all winter regimes. Male survival for both models decreased with increasing winter severity 

(Fig. 9b).  Mean early-winter body condition also was significantly higher under the bet-

hedging model (7.65±0.03 % IFBF for the bet-hedging model vs 7.42±0.04 % IFBF for the 

null model; Tables 5 and 7) under the standard winter regime (Cohen’s d = 35.65; Table 9). 

The difference between the two models remained consistent across the range of winter 

severities we tested (Fig 9c), although the effect size declined with increasing winter severity. 
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Calf survival and body mass 

 There was no significant difference in summer calf survival between the two models 

for the standard winter regime (0.61±0.002 for the both the bet-hedging and null models; 

Cohen’s d = 0.024; Tables 5,7, and 10), and this result was consistent across the range of 

winter severities we tested (Fig. 8a).  In contrast, calves in the bet-hedging model had a 

significantly higher rate of winter survival (0.59 ± 0.02, Tables 5 and 10, Fig. 10b) than calves 

in the null model (0.54 ± 0.02, Table 7) (Cohen’s d = 0.58; Table 10). This result was driven 

by lower mean body mass of calves at the onset of winter under the null model (97.10 ± 0.9 

kg for the null model versus 99.98 ± 0.6 kg for the bet-hedging model; Tables 5, 7, and 10; 

Cohen’s d = 14.62), and was unaffected by changing winter severity (Fig. 10c). 

 

Discussion 
 
 Results from our simulations support our prediction that elk populations employing a 

state-dependent bet-hedging strategy of maternal investment would increase at a faster rate 

than populations in which timing of parturition was independent of dam condition in spring. 

The higher average lambda predicted under the bet-hedging model was driven by (1) more 

calves surviving through winter due to a larger average body mass at the onset of winter, and 

(2) higher overwinter survival of females stemming from increased early-winter body 

condition. Interestingly however, the impact of higher early-winter winter body mass on 

overwinter calf survival decreased as winters became more severe, making female survival 

more important to population performance under harsher winter conditions. Females that 

delayed parturition and gave birth to larger calves subsequently invested less energy in 

lactation and entered winter in better condition, improving their probability of survival. The 
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importance of female elk favoring investment in their own survival over investment in their 

offspring can be seen in the changing age structure of the population. As winters became 

more severe, the average age of females in the population increased because fewer calves 

were recruited into the breeding population. This buffering of the population against temporal 

variation in recruitment by adult females has been demonstrated in wild populations of elk, 

caribou, moose, and other ungulates (Gaillard et al. 1998). By selectively investing in their 

own body condition rather than on offspring (those offspring being more likely to die when 

times are lean), females can live to reproduce another year when times are better. 

One surprising result of our analyses was the similarity in average birth mass between 

the bet-hedging and null models, despite birth mass being derived from two stochastic 

equations in the bet-hedging model and from an empirically derived normal distribution in the 

null model. This result implies that the methods used to generate birth mass in the bet-hedging 

model are reliable and produced realistic estimates of calf birth mass. In addition, because 

both models produced a similar range of birth masses, the differences in early-winter calf 

mass and overwinter survival of calves between the two models stemmed from the reduced 

overall (i.e., over the course of the summer) cost of delaying parturition. Cows give birth to 

larger calves while reducing lactation costs to maximize their own body condition. Many 

species of capital breeding ungulates such as white-tailed deer (Simard, et al., 2014), caribou 

(Post, et al., 2003) and red deer (Clements, et al., 2011) can adjust their gestation based on 

environmental and physiological cues, providing support for the hypothesis that such species 

can delay parturition to facilitate better allocation of resources and improve the survival of the 

dam and offspring. 
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 While in the absence of other limiting factors elk populations using the hypothesized 

bet-hedging strategy outperformed populations using the null strategy due to more effective 

allocation of resources by the dam to both herself and her offspring, the bet-hedging model 

makes several non-trivial assumptions.  First, the model assumes that predation, nutrition, or 

other factors do not lead to synchronous parturition among females and that adjustment of 

gestation length is not functionally possible. In systems where green-up occurs rapidly during 

a brief window, such as the arctic (Post et al. 2003), females may not have the luxury of 

delaying parturition. Likewise, intense predation pressure may necessitate birthing pulses to 

saturate predators with more offspring than can be consumed (Post et al. 2003).  These 

conditions would likely reduce or eliminate the advantages of maternal bet-hedging.  Second, 

the bet-hedging model assumes that the simulated animals are true capital breeders, using 

stored energy reserves to ‘fund’ both gestation and lactation, and therefore that the nutritional 

landscape has no overt effect on condition and survival of either the calf or the dam. In 

contrast, income breeders, such as many African ungulates (Ogutu et al. 2014), are dependent 

upon plant phenology and the availability of high-quality forage for successful reproduction. 

Most ungulate species likely fall somewhere between these two extremes (e.g., Noyes et al. 

2002), but the closer to the income end of the continuum a species falls, the less advantageous 

the bet-hedging strategy is likely to be. An additional consequence of the capital breeding 

assumption is that the simulated female elk in both models are given an allotment of energy 

that is then divided among gestation, lactation, and somatic reserves.  For the bet-hedging 

model, energy devoted for lactation is determined by a linear model regressing lactation on 

the energy devoted to gestation. For the null mode energy devoted to lactation was regressed 

on the female’s post-parturition body condition. This gives the bet-hedging model an inherent 
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advantage due to the linear equation used in the null model having a steeper slope, and thus 

incurring a higher cost, for lactation. If the influence of date of parturition on overall time 

spent nursing was included in the null model, then simulated calves in that model might be 

larger at the onset of winter and thus have a higher probability of survival. We plan to 

evaluate this possibility in later simulations. A third assumption of our analyses is that in both 

models, summer calf mortality was assumed to be driven by predation during the first month 

of life, which is often the case in large ungulates. However, predation can influence 

population dynamics throughout the year, especially when forage is sparse and large predators 

are common (Parker et al. 2009, Ogutu, et al. 2014). But for the purposes of our model and 

the system being simulated it has no bearing on our conclusions.  If we wanted to model a 

species that experienced more constant predation pressures, say those of the African 

savannah, then we would need to take this into account. Population density also was not taken 

into account in either of our models. Most vital rates of ungulates like elk are subject to 

density dependence (Singer et al. 1997). Again though, there is no reason to believe that such 

effects would manifest differently between our two models, and thus our general conclusions 

are likely unaffected by the lack of density dependence. Finally, our models assumed that calf 

survival, but not adult survival, was directly affected by winter severity. For the most part 

adult elk survival is not affected by winter severity (Singer et al. 1997), although under certain 

conditions, such as at high density or during extreme environmental events (such as forest 

fires) severe winters can increase adult winter mortality (Taper and Gogan 2002). 

Accordingly, this assumption seems reasonable in our models. 

Ungulates have been shown to adjust gestation length in response to environmental 

and physiological cues (Clements et al. 2011), and the results of our modeling support the 
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hypothesis that a state-dependent version of this tactic can improve population performance. 

When female elk in our bet-hedging model delayed parturition based on poor nutritional 

condition in spring, both they and their offspring experience a higher probability of survival to 

the following year. This result was consistent across a range of winter severities and could 

indicate that large ungulates like elk can buffer themselves against the extreme climatic 

variation produced by favoring somatic growth over the survival of offspring (Hansen et al. 

2019). Future empirical work should aim to test the predictions of our model, including 

comparisons of parturition and survival data from longitudinal studies within and among 

species. The knowledge gained from this and future studies will help better understand the 

evolution of life-history strategies and how they influence patterns of population performanc
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Tables and Figures 

Figure 1: The location of our study area, the Starkey Experimental Forest and Range, 
Oregon, U.S.A.
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Figure 2: Graphical representation of the maternal bet-hedging model. Numbers reference equations (described in detail in 
Table 1) that link model variables enclosed in boxes. Green numbers/boxes indicate stochastic equations whereas black 
numbers/boxes indicate deterministic equations. The model was initialized by assigning spring condition values (% ingesta-

 free body fat) to 100 adult female elk at random from the empirical distribution of condition data obtained at our 
study site. 
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Table 1 

Equation Data generated Formula Output units Source 

1 Calf birthdate -2.485 × Spring Condition + 163.11 Julian day Starkey data 

2 Birth mass 0.128 × Julian DOB – 2.145 Mass in Kg Starkey data 

3 Prob. of Calf Surviving 
Until Winter 

-0.0101 x (Birth Mass)2 + 0.4127 x Birth
Mass – 3.2477 (females)

-0.0016 x (Birth Mass)3 + 0.0823 x (Birth
Mass)2 – 1.2594 x Birth Mass + 6.048
(males)

Survival probability Starkey data 

4 Additional Energy 
Devoted to Gestation 

(Birth Mass – Minimum Birth Mass) × 
12,937 kJ/kg 

Kilojoules Hudson et al. 
2002 

5 Energy Invested in 
Lactation 

-5.552 × Additional Energy for Gestation +
3,000,000

Kilojoules Starkey data 

6 Calf Growth Rate 1×10-7 × Energy Invested in Lactation + 
0.117 

Kilojoules Starkey data 

7 Early Winter Calf Mass 193.13 kJ/kg × Calf Growth Rate + 25.398 Mass in Kg Starkey data 

8 Probability of Calf 
Surviving through Winter 

-0.0120088 x (Early Winter Calf Mass)2 +
3.1656 x Early Winter Calf Mass – 109.9

Survival probability Cook et al. 
2004 

9 Change in Condition of 
Dam over Summer 

(-0.7 × Spring Condition) – (6.297 × Calf 
Growth Rate) + 8.423 

Percent ingesta-free 
body fat 

Starkey data 
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Table 1:  Equations and associated data sources used to parameterize the maternal bet-hedging model. Equation numbers 
correspond to the numbering in Fig. 2. Green text indicates equations in which the results are stochastic due to being 
simulated using a prediction interval.

10 Early Winter Condition 
of Dam 

Spring Condition + Change in Condition Percentage 
ingesta-free body 
fat 

Starkey data 

11 Probability of Adults 
Surviving through 
Winter 

(exp(-4.717 + 0.955 x Winter 
Condition))/(1+exp(-4.717 + 0.955 x 
Winter Condition)) 

Survival 
probability 

Cook et al. 
2004 

12 Calves Surviving to Early 
Winter 

Individual calves that survive until winter will 
be fed into the early winter calf mass and 
subsequent overwinter survival equations 

NA NA 

13a and 
13b 

Lambda Nt+1/Nt Population growth 
rate 

NA 
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Figure 3: Graphical representation of the null model of maternal investment. Numbers reference equations (described in 
detail in Table 2) that link model variables enclosed in boxes. Green numbers/boxes indicate stochastic equations whereas 
black numbers/boxes indicate deterministic equations. The model was initialized by assigning spring condition values (% 
ingesta-free body fat) to 100 adult female elk at random from the empirical distribution of condition data obtained at  our 

study site.
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Table 2 

Equation Data generated Formula Output Source 

1 Prob. of Calf Surviving 
Until Winter 

-0.0101 x (Birth Mass)2 + 0.4127 x Birth
Mass – 3.2477 (females)

-0.0016 x (Birth Mass)3 + 0.0823 x (Birth
Mass)2 – 1.2594 x Birth Mass + 6.048
(males)

Survival 
probability 

Starkey data 

2 Additional Energy 
Devoted to Gestation 

(Birth Mass – Minimum Birth Mass) × 
12,937 kJ/kg 

Kilojoules Hudson, et al. 
2002 

3 Post-parturition condition 
of dam 

Spring condition-(((Gestation Energy/37,000 
kJ/kg)/Body mass * 100) 

Percentage ingesta-
free body fat 

Starkey data 

4 Energy Invested in 
Lactation 

113,327× Post-parturition Condition + 
1820318 

Kilojoules Starkey data 

5 Calf Growth Rate 1×10-7 × Energy Invested in Lactation + 
0.117 

Kilojoules Starkey data 

6 Early Winter Calf Mass 193.13 kJ/kg × Calf Growth Rate + 25.398 Mass in Kg Starkey data 

7 Probability of Calf 
Surviving through Winter 

-0.0120088 x (Early Winter Calf Mass)2 +
3.1656 x Early Winter Calf Mass – 109.9

Survival 
probability 

Cook, et al. 
2004 

8 Change in Condition of 
Dam over Summer 

(-0.7 × Spring Condition) – (6.297 × Calf 
Growth Rate) + 8.423 

Percentage ingesta-
free body fat. 

Starkey data. 
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9 Early Winter Condition 
of Dam 

Post-parturition condition + Change in 
Condition 

Percentage ingesta-
free body fat 

Starkey data 

10 Probability of Adults 
Surviving through Winter 

(exp(-4.717 + 0.955 x Winter 
Condition))/(1+exp(-4.717 + 0.955 x Winter 
Condition)) 

Survival probability Cook, et al. 
2004 

11 Calves Surviving to Early 
Winter 

Individual calves that survive until winter will 
be fed into the early winter calf mass and 
subsequent overwinter survival equations 

NA NA 

12a and 
12b 

Lambda Nt+1/Nt Population growth 
rate 

NA 

Table 2: List of the equations that generate the data for the Null model. Equation numbers match the numbering in Fig. 3. 
Green text indicates equations in which the results are stochastic due to being simulated using a prediction interval.
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Figure 4: Patterns of population growth for a simulated elk population over a 30-year time period extracted from a single iteration 
of the maternal bet-hedging model during a standard winter (with an average of approximately 70 severe winter days). Blue, green, 
and red lines represent females, males, and calves respectively, and the black line shows total population growth. The finite rate of 
population increases each year, lambda, is shown in purple. 
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Figure 5: Distribution of population output for the bet-hedging (green) and null (purple) models over 1000 iterations using the 
standard Starkey winter severity (Beta~(3,2.25), mean number of severe winter days=69.5). Data are the number of animals 
(calves, females, males, and total population), at the final year of iteration (year 30).
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Figure 6: Distribution of lambda for population for the bet-hedging (green) and null (purple) 
models over 1000 iterations using the standard Starkey winter severity (Beta~(3,2.25), mean 
number of severe winter days=69.5). Data are for the final year of iteration (year 30).
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Figure 7: Empirical relationships between (a) dam body condition (percent ingesta-free body fat) in spring and date of birth, (b) 
date of birth and calf birth mass, (c) energy invested in lactation and calf growth rate, (d) calf growth rate and calf winter mass, and 
(d) dam body condition in spring and energy invested in lactation. Relationships illustrated in panels a, b, c, and d were used to
parameterize the bet-hedging model, whereas only relationships illustrated in panels c, d, and e were used in the null model. The
blue line is the line of best fit and corresponds to the equations in Figs. 2 and 3 (equations 1, 2, 6 and 7 in the bet-hedging model
and equations 4, 5, 6 in the null model). Dotted red lines show the prediction intervals used to integrate stochasticity into the
simulations, while shaded grey areas show 95% confidence intervals for reference
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Table 3 

Regime # a b Number of Severe 
days 

Standard Deviation 

1 1.5 3.75 34.59 5.88 
2 1.75 3.5 40.70 6.38 
3 2 3.25 46.42 6.81 
4 2.25 3 52.33 7.23 
5 2.5 2.75 58.18 7.63 
6 2.75 2.5 64.03 8.00 
7 3 2.25 69.50 8.34 
8 3.25 2 75.50 8.69 
9 3.5 1.75 81.46 9.03 
10 3.75 1.5 87.32 9.34 

Table 3: Alpha and beta parameter values for beta distributions used to determine the number of severe winter days in a given 
season. The average and standard deviation of the number of severe winter days after 1,000 model iterations are presented for each 
of 10 winter severity regimes ranging from mild (regime #1) to severe (regime #10). The red highlighted distribution (Regime #7) 
reflects the current weather conditions at Starkey. 
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Table 4:  Means and standard deviations (SD) of output from the bet-hedging model for each winter severity regime. The red 
highlighted row (Regime #7) shows the values simulated for the current weather conditions at Starkey. 

Table 4  
Mean # 
Severe 
Winter 
Days 

Population, Year 
30 

Lambda Age, Year 30 Female Survival Male Survival 

Mean SD Mean SD Mean SD Mean SD Mean SD 

34.59 36,158.3 7,681.79 1.22 0.08 4.18 3.99 0.96 0.009 0.74 0.07 

40.7 30,394.9 7,852.48 1.21 0.10 4.29 4.11 0.96 0.009 0.74 0.07 

46.42 23,517.9 7,679.78 1.20 0.11 4.43 4.29 0.96 0.009 0.73 0.08 

52.33 17,426.2 6,870.92 1.19 0.13 4.61 4.52 0.96 0.009 0.73 0.09 

58.18 11,275.3 5,422.25 1.18 0.15 4.91 4.90 0.96 0.010 0.72 0.11 

64.03 7,053.83 3,719.17 1.16 0.16 5.25 5.31 0.96 0.011 0.72 0.12 

69.5 3,909.23 2,377.38 1.14 0.17 5.87 6.00 0.96 0.012 0.71 0.14 

75.5 2,039.44 1,328.45 1.11 0.18 6.65 6.83 0.96 0.013 0.70 0.16 

81.46 968.00 643.44 1.09 0.19 7.95 7.91 0.96 0.014 0.69 0.18 

87.32 458.45 313.00 1.06 0.18 9.77 9.10 0.96 0.016 0.67 0.21 
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Table 5:  Means and standard deviations (SD) of additional output from the bet-hedging model for each winter severity regime. 
The red highlighted row (Regime #7) shows the values simulated for the current weather conditions at Starkey. 

Table 5 

Mean 
# 
Severe 
Winter 
Days 

Adult Female 
Spring Body 
Condition 

Adult Female 
Early Winter 
Body Condition 

Calf Summer 
Survival 

Calf Winter 
Survival 

Calf Birth Mass Calf Early 
Winter Mass 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

34.59 5.56 1.61 7.65 0.54 0.61 0.03 0.95 0.19 16.33 2.68 99.99 9.55 

40.70 5.56 1.61 7.65 0.54 0.61 0.03 0.92 0.24 16.33 2.68 99.98 9.55 

46.42 5.56 1.61 7.65 0.54 0.61 0.03 0.87 0.29 16.33 2.68 99.98 9.55 

52.33 5.56 1.61 7.65 0.54 0.61 0.03 0.82 0.33 16.33 2.68 99.99 9.55 

58.18 5.56 1.61 7.65 0.54 0.61 0.03 0.75 0.38 16.33 2.68 99.99 9.55 

64.03 5.56 1.61 7.65 0.54 0.61 0.03 0.67 0.41 16.33 2.68 99.99 9.55 

69.50 5.56 1.61 7.65 0.54 0.61 0.03 0.59 0.44 16.33 2.68 99.98 9.55 

75.50 5.56 1.61 7.65 0.54 0.61 0.03 0.49 0.44 16.33 2.68 99.99 9.55 

81.46 5.56 1.61 7.65 0.54 0.61 0.04 0.40 0.44 16.33 2.68 99.99 9.54 

87.32 5.56 1.61 7.65 0.54 0.61 0.04 0.30 0.41 16.33 2.68 99.98 9.55 
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Table 6: Means and standard deviations (SD) of output from the null model for each winter severity regime. The red highlighted 
row (Regime #7) shows the values simulated for the current weather conditions at Starkey. 

Table 6  
Mean # 
Severe 
Winter 
Days 

Population, Year 
30 

Lambda Age, Year 30 Female Survival Male Survival 

Mean SD Mean SD Mean SD Mean SD Mean SD 

34.59 25,197.4 5,602.94 1.20 0.08 4.22 4.03 0.95 0.01 0.74 0.07 

40.70 20,288.7 5,744.80 1.20 0.09 4.33 4.17 0.95 0.01 0.73 0.08 

46.42 15,027.4 5,032.88 1.18 0.11 4.53 4.39 0.95 0.01 0.73 0.08 

52.33 10,618.8 4,333.49 1.17 0.12 4.75 4.67 0.95 0.01 0.73 0.09 

58.18 6,624.33 3,027.32 1.15 0.14 5.13 5.08 0.95 0.01 0.72 0.11 

64.03 3,941.16 2,039.86 1.14 0.15 5.54 5.60 0.95 0.01 0.72 0.12 

69.50 2,189.32 1,280.69 1.11 0.16 6.21 6.29 0.95 0.01 0.71 0.13 

75.50 1,106.46 712.08 1.09 0.17 7.21 7.21 0.95 0.02 0.70 0.15 

81.46 560.84 347.08 1.07 0.17 8.45 8.27 0.95 0.02 0.69 0.18 

87.32 266.30 174.91 1.04 0.17 10.53 9.47 0.95 0.02 0.68 0.22 
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Table 7: Means and standard deviations (SD) of additional output from the null model for each winter severity regime.  The red 
highlighted row (Regime #7) shows the values simulated for the current weather conditions at Starkey. 

Table 7 

Mean 
# 
Severe 
Winter 
Days 

Adult Female 
Spring Body 
Condition 

Adult Female 
Early Winter 
Body Condition 

Calf Summer 
Survival 

Calf Winter 
Survival 

Calf Birth Mass Calf Early 
Winter Mass 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

34.59 5.56 1.61 7.42 0.58 0.61 0.03 0.92 0.19 16.33 2.64 97.10 14.83 

40.70 5.56 1.61 7.42 0.58 0.61 0.03 0.88 0.24 16.33 2.64 97.10 14.83 

46.42 5.56 1.61 7.42 0.58 0.61 0.03 0.83 0.28 16.33 2.64 97.09 14.83 

52.33 5.56 1.61 7.42 0.58 0.61 0.03 0.78 0.33 16.32 2.64 97.10 14.84 

58.18 5.56 1.61 7.42 0.58 0.61 0.03 0.70 0.36 16.33 2.64 97.10 14.83 

64.03 5.56 1.61 7.42 0.58 0.61 0.03 0.62 0.39 16.33 2.64 97.09 14.83 

69.50 5.56 1.61 7.42 0.58 0.61 0.03 0.54 0.40 16.33 2.64 97.10 14.83 

75.50 5.56 1.61 7.42 0.58 0.61 0.04 0.45 0.41 16.33 2.64 97.11 14.83 

81.46 5.56 1.61 7.42 0.58 0.61 0.04 0.36 0.39 16.32 2.64 97.10 14.84 

87.32 5.56 1.61 7.42 0.58 0.61 0.05 0.27 0.37 16.33 2.64 97.08 14.84 
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Figure 8: Relationships between (a) mean number of severe winter days and mean lambda, (b) mean population size at year 30, 
and (c) mean age at year 30 for the bet-hedging (red) and null models (blue).
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Table 8 

Average # 
Severe 
Winter 
Days 

Mean Lambda Mean Population Size, 
Year 30 Mean Age, Year 30 

Difference Cohen's d Difference Cohen's 
d Difference Cohen's d 

34.59 -0.015*** 1.80 -10,960.94*** 1.63 0.04** 0.16 

40.70 -0.016*** 1.65 -10,106.21*** 1.47 0.05** 0.13 

46.42 -0.018*** 1.48 -8,490.43*** 1.31 0.10*** 0.21 

52.33 -0.020*** 1.40 -6,807.40*** 1.19 0.17*** 0.28 

58.18 -0.021*** 1.29 -4,650.93*** 1.06 0.22*** 0.27 

64.03 -0.023*** 1.27 -3,112.67*** 1.04 0.32*** 0.32 

69.50 -0.023*** 1.11 -1,719.91*** 0.90 0.29*** 0.21 

75.50 -0.023*** 1.09 -932.98*** 0.88 0.55*** 0.31 

81.46 -0.021*** 0.96 -407.16*** 0.79 0.50*** 0.22 

87.32 -0.021*** 0.93 -192.15*** 0.76 0.67*** 0.21 
Table 8: Differences in mean lambda, population size, and age at year 30, and associated 
effect size (using Cohen’s D) between the bet-hedging and null models of maternal 
investment. Rows represent each of ten winter severity regimes by average number of severe 
winter days. The red highlighted row (Regime #7) shows the values simulated for the current 
weather conditions at Starkey. * P≤0.05, ** P≤0.001, *** P≥0.00001. 
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Figure 9:  Relationships between (a) mean number of severe winter days and mean female survival, (b) mean male survival, and 
(c) mean early winter body condition for both the bet-hedging (red) and null models (blue).
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Table 9:  Difference between means and associated effect sizes (using Cohen’s D) between the bet-hedge and null model for 
average adult survival, average female survival, average male survival and average early winter body condition. The red 
highlighted row (Regime #7) shows the values simulated for the current weather conditions at Starkey. * P≤0.05, ** P≤0.001, *** 
P≥0.00001. 

Table 9 

Mean # 
Severe 
Winter Days 

Mean Female Survival Mean Male Survival Mean Early Winter Body Condition 

Difference Cohen's d Difference Cohen's d Difference Cohen's d 

34.89 -0.008*** 6.36 -0.002*** 0.41 -0.23*** 88.72 

40.45 -0.009*** 6.52 -0.002*** 0.39 -0.23*** 80.84 

46.42 -0.009*** 6.28 -0.002*** 0.36 -0.23*** 70.81 

52.10 -0.009*** 5.81 -0.003*** 0.36 -0.23*** 62.18 

58.17 -0.009*** 5.40 -0.002*** 0.24 -0.23*** 53.17 

63.82 -0.009*** 4.97 -0.002*** 0.21 -0.23*** 42.50 

69.72 -0.010*** 4.81 -0.002** 0.16 -0.23*** 35.65 

75.43 -0.010*** 4.12 -0.001* 0.09 -0.23*** 29.19 

81.38 -0.010*** 3.51 0.000 0.02 -0.23*** 23.18 

87.09 -0.010*** 3.04 0.002* 0.08 -0.23*** 19.11 
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Figure 10:  Relationships between (a) mean number of severe winter days and mean early calf survival, (b) mean winter calf 
survival, (c) mean calf birth mass, and (d) mean calf early winter mass for both the bet-hedging (red) and null models (blue). 
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Table 10 

Mean # 
Severe 
Winter 
Days 

Mean Calf Summer Survival 
Mean Calf Winter
Survival 

Mean Calf Birth Mass 
Mean Calf Early Winter 
Mass 

Difference Cohen's d Difference Cohen's d Difference Cohen's d Difference Cohen's d 

34.89 -0.00019 0.040 -0.026*** 0.73 -0.0012 0.130 -2.88*** 18.66 

40.45 -0.00020 0.042 -0.033*** 0.76 -0.0008 0.072 -2.89*** 18.73 

46.42 -0.00004 0.009 -0.037*** 0.72 -0.0003 0.026 -2.89*** 17.81 

52.10 -0.00031 0.063 -0.044*** 0.72 -0.0009 0.068 -2.89*** 16.88 

58.17 0.00011 0.020 -0.046*** 0.67 0.0002 0.012 -2.89*** 16.54 

63.82 0.00009 0.016 -0.050*** 0.69 -0.0017 0.087 -2.90*** 15.58 

69.72 0.00014 0.024 -0.046*** 0.58 -0.0001 0.004 -2.88*** 14.62 

75.43 0.00044 0.066 -0.045*** 0.58 0.0003 0.010 -2.88*** 13.09 

81.38 0.00002 0.002 -0.034*** 0.45 -0.0020 0.054 -2.89*** 11.51 

87.09 0.00014 0.016 -0.031*** 0.45 -0.0004 0.008 -2.90*** 10.27 

Table 10: Difference between means and associated effect sizes (using Cohen’s D) between the bet-hedge and null model for 
average early calf survival, average winter calf survival, average calf birth mass and average calf early winter mass. Rows represent 
each of ten winter severity regimes by average number of severe winter days. The red highlighted row (Regime #7) shows the 
values simulated for the current weather conditions at Starkey. * P≤0.05, ** P≤0.001, *** P≥0.00001. 




